We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.
Keywords: finite volumes, convection-diffusion equations, noncoercivity, non-regular data
@article{M2AN_2002__36_4_705_0,
author = {Droniou, J\'er\^ome and Gallou\"et, Thierry},
title = {Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {705--724},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {4},
doi = {10.1051/m2an:2002031},
mrnumber = {1932310},
zbl = {1070.65566},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2002031/}
}
TY - JOUR
AU - Droniou, Jérôme
AU - Gallouët, Thierry
TI - Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$
JO - ESAIM: Modélisation mathématique et analyse numérique
PY - 2002
SP - 705
EP - 724
VL - 36
IS - 4
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/m2an:2002031/
DO - 10.1051/m2an:2002031
LA - en
ID - M2AN_2002__36_4_705_0
ER -
%0 Journal Article
%A Droniou, Jérôme
%A Gallouët, Thierry
%T Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 705-724
%V 36
%N 4
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/m2an:2002031/
%R 10.1051/m2an:2002031
%G en
%F M2AN_2002__36_4_705_0
Droniou, Jérôme; Gallouët, Thierry. Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 4, pp. 705-724. doi: 10.1051/m2an:2002031
[1] , Sobolev Spaces. Academic Press, New York (1975). | Zbl | MR
[2] , and, Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Zbl | Numdam
[3] , Non-coercive linear elliptic problems. Potential Anal. 17 (2002) 181-203.
[4] , Ph.D. thesis, CMI, Université de Provence.
[5] , and, Finite Volume Methods, in Handbook of Numerical Analysis, Vol. VII, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 713-1020. | Zbl
[6] , and, Convergence of finite volume approximations to the solutions of semilinear convection diffusion reaction equations. Numer. Math. 82 (1999) 91-116. | Zbl
[7] and, Comparison between finite volume finite element methods for the numerical simulation of an elliptic problem arising in electrochemical engineering. Comput. Methods Appl. Mech. Engrg. 115 (1994) 315-338.
[8] and, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. | Zbl
[9] , and, Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. (2000). | MR
Cité par Sources :






