Guermond, Jean-Luc
Stabilization of Galerkin approximations of transport equations by subgrid modeling
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) no. 6 , p. 1293-1316
Zbl 0946.65112 | MR 1736900 | 4 citations dans Numdam
URL stable : http://www.numdam.org/item?id=M2AN_1999__33_6_1293_0

Bibliographie

[1] A. A. O. Ammi and M. Maron, Nonlinear Galerkin methods and mixed finite elements : two-grid algorithms for the Navier-Stokes equations Numer. Math. 68 (1994) 189-213. MR 1283337 | Zbl 0811.76035

[2] D. N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations Calcolo 21 (1984) 337-344. MR 799997 | Zbl 0593.76039

[3] P. Azerad and G. Pousin, Inégalité de Poincaré courbe pour le traitement variationnel de l'équation de transport C. R.Acad.Sci. Paris Sér. I 322 (1996) 721-727. MR 1387427 | Zbl 0852.76073

[4] C. Baiocchi, F. Brezzi and L. P. Franca, Virtual bubbles and Galerkin-least-square type methods (Ga. L. S.) Comput. Methods Appl. Mech. Engrg 105 (1993) 125-141. MR 1222297 | Zbl 0772.76033

[5] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels, théorèmes d'approximation, application à l'équation de transport Ann. Sci. École Norm. Sup. Sér. IV 3 (1970) 185-233. Numdam | MR 274925 | Zbl 0202.36903

[6] M. Barton-Smith, Mémoire de DEA. Analyse Numérique, Paris XI, Internal report LIMSI (1999).

[7] F. Brezzi, M. O. Bristeau, L. Franca, M. Mallet and G. Rogé, Relationship between stabihzed finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Engrg. 96 (1992) 117-129. MR 1159592 | Zbl 0756.76044

[8] A. N. Brooks and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations Comput. Methods. Appl. Mech. Engrg 32 (1982) 199-259. MR 679322 | Zbl 0497.76041

[9] M. Crouzeix and P. -A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations RAIRO Anal. Numér 7 (1973) 33-76. Numdam | MR 343661 | Zbl 0302.65087

[10] R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equations. Comput. Methods Appl. Mech. Engrg. 156 (1997) 185-210. MR 1622508 | Zbl 0959.76040

[11] J. Douglas and T. F. Russell, Numerical methods for convection dominated diffusion problems based on combinig the method of characteristics with finite element methods or finite difference method SIAM J. Numer. Anal. 19 (1982) 871-885. MR 672564 | Zbl 0492.65051

[12] R. Dautray and J. -L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques Masson, Paris (1984). Zbl 0642.35001

[13] C. Foias, O. P. Manley and R. Temam Modelization of the interaction of small and large eddies in two dimensional turbulent flows, Math. Modelling Numer. Anal. 22 (1988) 93-114. Numdam | Zbl 0663.76054

[14] M. Fortin, An analysis of the convergence of mixed Finite Element Methods RAIRO Anal. Numér. 11 (1977) 341-354. Numdam | MR 464543 | Zbl 0373.65055

[15] L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods Comput. Methods Appl. Mech. Engrg. 123 (1994) 299-308. MR 1339376 | Zbl 1067.76567

[16] M. Germano, U. Piomelh, P. Moin and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model Phys. Fluids A 3 (1991) 1760-1765. Zbl 0825.76334

[17] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations Springer Ser. Comput Math. 5, Springer-Verlag (1986). MR 851383 | Zbl 0585.65077

[18] J. -L. Guermond, Stabilisation par viscosité de sous-maille pour l'approximation de Galerkin des opérateurs monotones C. R. Acad. Sci. Paris Sér. I 328 (1999) 617-622. MR 1680045 | Zbl 0933.65058

[19] T. J. R. Hughes, Multiscale phenomena Green's function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations Comput. Methods Appl. Mech. Engrg. 127 (1995) 387-401. MR 1365381 | Zbl 0866.76044

[20] C. Johnson, U. Navert, J. Pitkaranta, Finite element methods for linear hyperbolic equations Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. MR 759811 | Zbl 0526.76087

[21] O. A. Ladyzhenskaya, Modification of the Navier-Stokes equations for large velocity gradients Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory, Consultants bureau, New-York (1970).

[22] M. Manon and R. Temam, Nonlinear Galerkin methods : the finite element case Numer. Math. 57 (1990) 1-22. MR 1057121 | Zbl 0702.65081

[23] T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal 28 (1991) 133-140. MR 1083327 | Zbl 0729.65085

[24] O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier Stokes equations. Numer. Math. 38 (1982) 309-332. MR 654100 | Zbl 0505.76100

[25] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer Ser. Comput. Math. 23, Springer-Verlag (1994). MR 1299729 | Zbl 0803.65088

[26] J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiments. J. Atmospheric Sei. 2 (1963) 680-689.

[27] E. Süli, Convergence and non-linear stability of the Lagrange-Galerkin method for the Navier-Stokes equations Numer, Math. 3 (1988) 459-483. MR 951325 | Zbl 0637.76024

[28] B. García-Archilla, J. Novo and E. S. Titi, Postprocessing the Galerkin method : a novel approach to Approximate Inertial Manifolds. SIAM J. Numer. Anal. 35 (1998) 941-972. MR 1619914 | Zbl 0914.65105

[29] G. Zhou, How accurate is the streamline diffusion finite element method ? Math. Comp. 66 (1997) 31-44. MR 1370859 | Zbl 0854.65094