@article{M2AN_1998__32_5_631_0,
author = {Courbet, B. and Croisille, J. P.},
title = {Finite volume box schemes on triangular meshes},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {631--649},
year = {1998},
publisher = {Elsevier},
volume = {32},
number = {5},
mrnumber = {1643473},
zbl = {0920.65065},
language = {en},
url = {https://www.numdam.org/item/M2AN_1998__32_5_631_0/}
}
TY - JOUR AU - Courbet, B. AU - Croisille, J. P. TI - Finite volume box schemes on triangular meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 631 EP - 649 VL - 32 IS - 5 PB - Elsevier UR - https://www.numdam.org/item/M2AN_1998__32_5_631_0/ LA - en ID - M2AN_1998__32_5_631_0 ER -
Courbet, B.; Croisille, J. P. Finite volume box schemes on triangular meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 5, pp. 631-649. https://www.numdam.org/item/M2AN_1998__32_5_631_0/
[1] , , Some error estimates for the box method, SIAM J. Numer. Anal, 24, 4, 1987, 777-787. | Zbl | MR
[2] , , , Connection between finite volume and mixed finite element methods, Math. Model. and Numer. Anal. (M2AN), to appear. | Zbl | MR | Numdam
[3] , Finite Elemente, Springer Lehrbuch, 1991. | Zbl
[4] , , The mathematical theory of finite element methods, Texts in Applied Mathematics 15, Springer. | Zbl
[5] , , Mixed and Hybrid Finite Element Methods, Springer Series in Comp. Math., 15, Springer Verlag, New-York, 1991. | Zbl | MR
[6] , , , A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations, AIAA-83-0126, 1983.
[7] , , A "box-scheme" for the Euler equations, Lecture Notes in Math., 1270, Springer-Verlag, 1986, 52-63. | Zbl | MR
[8] , Schémas boîte en réseau triangulaire, ONERA, 1992, unpublished.
[9] , Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale, n° 4, 1990, 21-46. | Zbl
[10] , Étude d'une famille de schémas boîtes à deux points et application à la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale, n° 5, 1991, 31-44.
[11] , , Conforming and non conforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O. 7, 1973, R-3, 33-76. | Zbl | MR | Numdam
[12] , Méthodes de volumes-éléments-finis: Application aux équations de Navier-Stokes et résultats de convergence, Thèse de l'Université de Lyon 1, France 1992.
[13] , , The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J. Sci. Stat. Comput., 12, 1, 1991, 127-144. | Zbl | MR
[14] , , A new mixed finite element for the Stokes and elasticity problems, SIAM J. Numer. Anal., 30, 4, 1993, 971-990. | Zbl | MR
[15] , On first and second order box schemes, Computing, 41, 1989, 277-296. | Zbl | MR
[16] , Adaptive finite element method for diffusion and convection problems, Comp. Meth. in Appl. Mech. Eng., 82, 1990, 301-322. | Zbl | MR
[17] , A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard éd., Academic Press, New-York, 1971, 327-350. | Zbl | MR
[18] , , Nonlinear moving boundary problems and a Keller box scheme, SIAM J. Numer. Anal., 21, 5, 1984, 883-893. | Zbl | MR
[19] , The covolume approach to Computing incompressible flows, Incompressible Comp. Fluid Dynamics, M. P. Gunzberger, R. A. Nicolaides Ed., 1993, Cambridge Univ. Press.
[20] , Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29, 1, 1992, 32-56. | Zbl | MR
[21] , , Covolume solutions of three dimensional div-curl equations, ICASE Report 95-4. | Zbl
[22] , Some three-level finite difference methods for simulating advection in fluids, Computers and Fluids, 19, 1991, 119-140. | Zbl | MR
[23] , , A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Math, 606, Springer-Verlag, 1977, 292-315. | Zbl | MR
[24] , Application of compact difference schemes to the conservative Euler equations for one-dimensional flow, NASA TM 8326.
[25] , A two-point difference scheme for Computing steady-state solutions to the conservative one-dimensional Euler equations, Computers and Fluids, 12, 1, 1984, 11-30. | Zbl
[26] , , Implicit conservative schemes for the Euler equations, AIAA J., 24, 2, 1986, 215-233. | Zbl | MR





