@article{M2AN_1997__31_1_1_0,
author = {Bennethum, Lynn Schreyer and Feng, Xiaobing},
title = {A domain decomposition method for solving a {Helmholtz-like} problem in elasticity based on the {Wilson} nonconforming element},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1--25},
year = {1997},
publisher = {Elsevier},
volume = {31},
number = {1},
mrnumber = {1432850},
zbl = {0877.73061},
language = {en},
url = {https://www.numdam.org/item/M2AN_1997__31_1_1_0/}
}
TY - JOUR AU - Bennethum, Lynn Schreyer AU - Feng, Xiaobing TI - A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 1 EP - 25 VL - 31 IS - 1 PB - Elsevier UR - https://www.numdam.org/item/M2AN_1997__31_1_1_0/ LA - en ID - M2AN_1997__31_1_1_0 ER -
%0 Journal Article %A Bennethum, Lynn Schreyer %A Feng, Xiaobing %T A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element %J ESAIM: Modélisation mathématique et analyse numérique %D 1997 %P 1-25 %V 31 %N 1 %I Elsevier %U https://www.numdam.org/item/M2AN_1997__31_1_1_0/ %G en %F M2AN_1997__31_1_1_0
Bennethum, Lynn Schreyer; Feng, Xiaobing. A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 1, pp. 1-25. https://www.numdam.org/item/M2AN_1997__31_1_1_0/
[1] , 1975, Sobolev Spaces, Academic Press, New York. | Zbl | MR
[2] , and , 1964, Partial Differential Equations, John Wiley & Sons, New York. | Zbl | MR
[3] , 1978, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. | Zbl | MR
[4] , and , 1988, Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J., 57, pp. 795-818. | Zbl | MR
[5] and , 1990, Mathematical Analysis and Numencal Methods for Science and Technology, I, Springer-Verlag, New York.
[6] , 1991, Méthodes de décomposition de domaines pour les problèmes de propagation d'ondes en régime harmonique, Ph. D. Thesis, Université Paris IX Dauphine, UER Mathématiques de la Decision. | Zbl
[7] , and , A domain decomposition method for the harmonie Maxwell equations, Itérative Methods in Linear Algebra, Elsevier Science Publishers B. V. (North-Holland), Amsterdam, pp. 475-484, R. Beauwens and P. de Groen, eds. | Zbl | MR
[8] , , and , 1993, A parallel iterative procedure applicable to the approximate solution of second order partial differential e-quations by mixed finite element methods, Numer. Math., 65, pp.95-108. | Zbl | MR
[9] and , 1982, Mixed finite element methods for second order elliptic problems, Matemática Aplicada e Computacional, 1, pp. 91-103. | Zbl | MR
[10] and , 1976, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin. | Zbl | MR
[11] , 1992, On miscible displacement in porous media and absorbing boundary conditions for electromagnetic wave propagation and on elastic and nearly elastic waves in the frequency domam, Ph. D. Thesis, Purdue University, 1992.
[12] , A mixed finite element domam decomposition method for nearly elastic waves in the frequency domain (submitted).
[13] , A domain decomposition method for convection-dominated convection-diffusion equations, preprint.
[14] , 1992, Singularities in Boundary Value Problems, Research Notes in Applied Mathematics, Vol. 22, Springer-Verlag and Masson. | Zbl | MR
[15] , 1982, Partial Differential Equations, Fourth Edition, Springer-Verlag, New York. | MR
[16] , 1994, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics, No. 83, American Mathematical Society. | Zbl | MR
[17] , 1994, A parallelizable iterative procedure for the Helmholtz problem, Appl. Numer. Math., 14, pp. 435-449. | Zbl | MR
[18] , 1965, Potential Methods in the Theory of Elasticity, Israel Program for Scientiflc Translations, Jerusalem. | Zbl | MR
[19] , 1976, On the convergence of Wilson's nonconforing element for solving the elastic problem, Comput. Methods Appl. Mech. Engrg, 7, pp. 1-16. | Zbl | MR
[20] , 1955, Contributions à un problème de M. M. Picone, Ann. Mat. Pura e Appl., 41, pp. 201-215. | Zbl | MR
[21] and , 1972, Nonhomogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York. | Zbl
[22] , 1988, 1988, On the Schwartz alternatmg method I, III, First and Third International Symposium on Domain Decomposition Method for Partial Differential Equations, SIAM, Philadelphia. | MR
[23] and , 1989, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math., 55, pp. 575-598. | Zbl | MR
[24] , 1981, On Korn's second inequality, R.A.I.R.O Anal. Numér., 15, pp. 237-248. | Zbl | MR | Numdam
[25] , , and , 1992, On the solution of the equations of motion for nearly elastic solids in the frequency domain, Proceedings of the IV Reunion de Trabajo en Procesamiento de la Información y Control, Centro de Cálculo Cientifico, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, November 1991, or Technical Report #164, Center for Applied Mathematics, Purdue University.
[26] , 1974, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp, 28, pp. 959-962. | Zbl | MR
[27] , 1977, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse d'État, Université Pierre et Marie Curie, Paris.
[28] , 1965, Seismic Waves, Radiation, Transmission and Attenuation, McGraw-Hill.
[29] , , and , 1971, Incompatible displacement models, Symposium on Numerical and Computer Methods in Structural Engineering, O.N.R., University of Illinois.
[30] , 1992, Iterative methods by space decomposition and subspace correction, SIAM Review, 34, pp, 581-613. | Zbl | MR
[31] , 1980, Functional Analysis, Springer-Verlag, Berlin-New York. | Zbl | MR





