@article{M2AN_1994__28_7_815_0,
author = {Estep, Donald and French, Donald},
title = {Global error control for the continuous {Galerkin} finite element method for ordinary differential equations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {815--852},
year = {1994},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {28},
number = {7},
mrnumber = {1309416},
zbl = {0822.65054},
language = {en},
url = {https://www.numdam.org/item/M2AN_1994__28_7_815_0/}
}
TY - JOUR AU - Estep, Donald AU - French, Donald TI - Global error control for the continuous Galerkin finite element method for ordinary differential equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 815 EP - 852 VL - 28 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1994__28_7_815_0/ LA - en ID - M2AN_1994__28_7_815_0 ER -
%0 Journal Article %A Estep, Donald %A French, Donald %T Global error control for the continuous Galerkin finite element method for ordinary differential equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 815-852 %V 28 %N 7 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1994__28_7_815_0/ %G en %F M2AN_1994__28_7_815_0
Estep, Donald; French, Donald. Global error control for the continuous Galerkin finite element method for ordinary differential equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 7, pp. 815-852. https://www.numdam.org/item/M2AN_1994__28_7_815_0/
[1] , 1987, The Finite Element Method for Elliptic Problems. North-Holland, New York. | Zbl | MR
[2] , , 1987, Error estimates and automatic time step control for nonlinear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23. | Zbl | MR
[3] , , 1991, Adaptive finite element methods for parabolic problems I a linear model problem, SIAM J. Numer. Anal., 28, 43-77. | Zbl | MR
[4] , , 1992, Adaptive finite element methods for parabolic problems II optimal error estimates in L∞(L2) and L∞(L∞), preprint # 1992-09, Chalmers University of Technology. | Zbl | MR
[5] , , Adaptive finite element methods for parabolic problems III time steps variable in space, in preparation.
[6] , , 1992, Adaptive finite element methods for parabolic problems IV nonlinear problems, Preprint # 1992-44, Chalmers Umversity of Technology. | Zbl | MR
[7] , , 1993, Adaptive finite element methods for parabolic problems V. long-time integration, preprint # 1993-04, Chalmers University of Technology. | Zbl | MR
[8] , A posteriori error bounds and global error control for approximations of ordinary differential equations, SIAM J. Numer. Anal. (to appear). | Zbl | MR
[9] , , The dynamical behavior of the discontinuous Galerkin method and related difference schemes, preprint. | Zbl | MR
[10] , , Long time behaviour ofarbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems, preprint. | Zbl | MR
[11] , , 1992, Global dynamics of finite element in time approximations to nonlinear evolution problems, International Conference on Innovative Methods in Numerical Analysis, Bressanone, Italy.
[12] , , 1990, Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comp., 39, 271-295. | Zbl | MR
[13] , 1980, Ordinary Differential Equations, John Wiley and Sons, Inc., New York. | Zbl | MR
[14] , 1988, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 908-926. | Zbl | MR
[15] , 1990, Personal communication.
[16] , 1974, Numerical Quadrature and Solution of Ordinary Differential Equations, Applied Mathematical Sciences 10, Springer-Verlag, New York, 1974. | Zbl | MR






