@article{M2AN_1990__24_2_265_0,
author = {Suri, Manil},
title = {The $p$-version of the finite element method for elliptic equations of order $2l$},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {265--304},
year = {1990},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {24},
number = {2},
mrnumber = {1052150},
zbl = {0711.65094},
language = {en},
url = {https://www.numdam.org/item/M2AN_1990__24_2_265_0/}
}
TY - JOUR AU - Suri, Manil TI - The $p$-version of the finite element method for elliptic equations of order $2l$ JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1990 SP - 265 EP - 304 VL - 24 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1990__24_2_265_0/ LA - en ID - M2AN_1990__24_2_265_0 ER -
%0 Journal Article %A Suri, Manil %T The $p$-version of the finite element method for elliptic equations of order $2l$ %J ESAIM: Modélisation mathématique et analyse numérique %D 1990 %P 265-304 %V 24 %N 2 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1990__24_2_265_0/ %G en %F M2AN_1990__24_2_265_0
Suri, Manil. The $p$-version of the finite element method for elliptic equations of order $2l$. ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 2, pp. 265-304. https://www.numdam.org/item/M2AN_1990__24_2_265_0/
[1] and , The pand h-p versions of the finite element method. An overview, Technical Note BN-1101, Institute for Phy. Sci. and Tech., 1989, To appear in Computer Methods in Applied Mechanics and Engineering (1990).
[2] and , Error estimates for the combined h and p version of the finite element method, Numer. Math., 37 (1981), pp. 252-277. | Zbl | MR
[3] and, The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 9 No. 4 (1987), pp. 750-776. | Zbl | MR
[4] and , 9 The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. and Numer. Anal., 21, No. 2 (1987), pp. 199-238. | Zbl | MR | Numdam
[5] and , Lectures notes on finite element analysis, In préparation.
[6] ,and , The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), pp.515-545. | Zbl | MR
[7] and , Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | Zbl
[8] , Multivariate Splines, SIAM, Philadelphia, 1988. | Zbl | MR
[9] , The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21 (1984), pp. 1180-1207. | Zbl | MR
[10] , The approximation of solutions of elliptic boundary-values problems via the p-version of the finite element method, SIAM J. Numer. Anal., 23 (1986), pp. 58-77. | Zbl | MR
[11] and , Table of Integrals, Series and Products, Academie Press, London, NewYork, 1965. | Zbl | MR
[12] and , The h, p and h-p versions of the finite element method in one dimension, part 1 : the error analysis of the p-versioc ; part 2 : the error analysis of the h and h-p versions; part 3 : the adaptive h-p version, Numer.Math., 49 (1986), pp.577-683. | Zbl | MR
[13] and , The h-p version of the finite element method I, Computational Mechanics, 1 (1986), pp. 21-41. | Zbl
[14] and, The h-p version of the finite element method II, Computational Mechanics, 2 (1986), pp. 203-226. | Zbl
[15] , and, Inequalitie, Cambridge University Press, Cambridge, 1934. | Zbl | JFM
[16] and , The p-version of the finite element method for problems requiring C1-continuity, SIAM J. Numer. Anal., 22 (1985), pp. 1082-1106. | Zbl | MR
[17] , Boundary-value problems for elliptic equations in domains with conic or corner points, Trans. Moscow Math. Soc, 16 (1967), pp.227-313. | Zbl | MR
[18] and, Boundary-value problems for partial differential equations in non-smooth domains, Russian Math. Surveys, 38 (1983), pp.1-86. | Zbl
[19] , A twelfth order theory of transverse bending of transversly isotropic plates, Z. Angew. Math. Mech., 63 (1983), pp.285-289. | Zbl
[20] , Reflections on the theory of elastic plates, Appl. Mech. Rev., 38 (1985), p. 11.
[21] , Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. | Zbl | MR
[22] , Classical Orthogonal Polynomials, Moscow, 1979 (In Russian). | Zbl | MR





