@article{M2AN_1982__16_3_211_0,
author = {Hermeline, F.},
title = {Triangulation automatique d{\textquoteright}un poly\`edre en dimension $N$},
journal = {RAIRO. Analyse num\'erique},
pages = {211--242},
year = {1982},
publisher = {Centrale des revues, Dunod-Gauthier-Villars},
address = {Montreuil},
volume = {16},
number = {3},
mrnumber = {672417},
zbl = {0567.65083},
language = {fr},
url = {https://www.numdam.org/item/M2AN_1982__16_3_211_0/}
}
TY - JOUR AU - Hermeline, F. TI - Triangulation automatique d’un polyèdre en dimension $N$ JO - RAIRO. Analyse numérique PY - 1982 SP - 211 EP - 242 VL - 16 IS - 3 PB - Centrale des revues, Dunod-Gauthier-Villars PP - Montreuil UR - https://www.numdam.org/item/M2AN_1982__16_3_211_0/ LA - fr ID - M2AN_1982__16_3_211_0 ER -
Hermeline, F. Triangulation automatique d’un polyèdre en dimension $N$. RAIRO. Analyse numérique, Tome 16 (1982) no. 3, pp. 211-242. https://www.numdam.org/item/M2AN_1982__16_3_211_0/
[1] et , On the angle condition in the finite element method, Siam J Num Anal, Vol 13, n° 2 (1976) | Zbl | MR
[2] , Geometrie tome 3 convexes et polytopes, polyedres réguliers, aires et volumes, Fernand Nathan Paris (1978) | Zbl
[3] , et , Construction of Vornot polyhedra, J Comp Phys 29 (1978), pp 81-92 | Zbl | MR
[4] , Une methode heuristique de maillage dans le plan pour la mise en oeuvre des elements finis, These Paris (1978)
[5] , Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696 | Zbl
[6] , The finite element method for elliptic problems, North-Holland (1978) | Zbl | MR
[7] , et , Covering space with equal spheres, Mathematika 6(1959), pp 147-157 | Zbl | MR
[8] , Sur la sphère vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800 | Zbl
[9] , A new convex hull algorithm for planar sets, ACM TMS, vol 3, n° 4 (1977), pp 398-403 | Zbl
[10] et , Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, n°2 (1977), pp 168-173 | Zbl | MR
[11] , Une methode automatique de maillage en dimension n, These Paris (1980)
[12] , Two-dimensional Voronot diagrams in Lp-Metric, J of the ACM, vol 27, n° 4 (1980), pp 604-618 | Zbl | MR
[13] et , Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64 | Zbl
[14] , Lagrangian method for the Navier-Stokes equations, Communication non publiée
[15] et , Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, n°2 (1977), p 87 | Zbl | MR
[16] , Locally equiangular triangulations, Comp J , vol 21, n° 3 (1977), p 243 | MR
[17] , A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341 | Zbl
[18] , Computing the n-dimensional Delaunay tesselation with application to Voronot polytopes, The Computer Journal, vol 24, n° 2 (1981) | MR
[19] , Computing Dirichlet tesselations, The Computer Journal, vol 24, n° 2 (1981) | MR





