Nous donnons diverses observations sur la structure des modules d’Iwasawa modérément ramifiés pour une -extension (ou une -extension multiple) d’un corps de nombres. Dans cet article, nous considérons la question de savoir si un module d’Iwasawa modérément ramifié possède un sous-module fini (ou pseudo-nul) non-nul ou non. Pour la -extension cyclotomique de (avec impair), nous pouvons obtenir une solution complète à cette question. Nous donnons également des conditions suffisantes pour avoir un sous-module pseudo-nul non-nul pour la -extension d’un corps quadratique imaginaire. Et nous donnons aussi une application de nos résultats à la « théorie d’Iwasawa non-abélienne » dans le sens d’Ozaki.
We will give several observations about the structure of tamely ramified Iwasawa modules for a -extension (or a multiple -extension) of an algebraic number field. In the present paper, we consider the question whether a given tamely ramified Iwasawa module has a non-trivial finite (or pseudo-null) submodule or not. For the cyclotomic -extension of (with odd ), we can obtain a complete answer to this question. We also give sufficient conditions for having a non-trivial pseudo-null submodule for the case of the -extension of an imaginary quadratic field. We also give an application of our results to the “non-abelian Iwasawa theory” in the sense of Ozaki.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1038
Mots clés : Iwasawa modules, finite submodules, pseudo-null submodules
@article{JTNB_2018__30_2_533_0, author = {Fujii, Satoshi and Itoh, Tsuyoshi}, title = {Some remarks on pseudo-null submodules of tamely ramified {Iwasawa} modules}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {533--555}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {2}, year = {2018}, doi = {10.5802/jtnb.1038}, mrnumber = {3891326}, zbl = {1442.11144}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1038/} }
TY - JOUR AU - Fujii, Satoshi AU - Itoh, Tsuyoshi TI - Some remarks on pseudo-null submodules of tamely ramified Iwasawa modules JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 533 EP - 555 VL - 30 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1038/ DO - 10.5802/jtnb.1038 LA - en ID - JTNB_2018__30_2_533_0 ER -
%0 Journal Article %A Fujii, Satoshi %A Itoh, Tsuyoshi %T Some remarks on pseudo-null submodules of tamely ramified Iwasawa modules %J Journal de théorie des nombres de Bordeaux %D 2018 %P 533-555 %V 30 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1038/ %R 10.5802/jtnb.1038 %G en %F JTNB_2018__30_2_533_0
Fujii, Satoshi; Itoh, Tsuyoshi. Some remarks on pseudo-null submodules of tamely ramified Iwasawa modules. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 533-555. doi : 10.5802/jtnb.1038. http://www.numdam.org/articles/10.5802/jtnb.1038/
[1] Noetherian -modules, adjoints, and Iwasawa theory, Ill. J. Math., Volume 30 (1986) no. 4, pp. 636-652 | MR | Zbl
[2] Pseudo-null submodules of the unramified Iwasawa module for -extensions, Interdiscip. Inf. Sci., Volume 16 (2010) no. 1, pp. 55-66 | MR | Zbl
[3] On the depth of the relations of the maximal unramified pro- Galois group over the cyclotomic -extension, Acta Arith., Volume 149 (2011) no. 2, pp. 101-110 | DOI | MR | Zbl
[4] On restricted ramifications and pseudo-null submodules of Iwasawa modules for -extensions, J. Ramanujan Math. Soc., Volume 29 (2014) no. 3, pp. 295-305 | MR | Zbl
[5] Noncyclotomic -extensions of imaginary quadratic fields, Exp. Math., Volume 11 (2002) no. 4, pp. 469-475 | DOI | Zbl
[6] Class field theory, From theory to practice, Springer Monographs in Mathematics, Springer, 2003, xiii+491 pages | Zbl
[7] The Iwasawa invariants of -extensions of a fixed number field, Am. J. Math., Volume 95 (1973) no. 1, pp. 204-214 | DOI | MR | Zbl
[8] On the Iwasawa invariants of totally real number fields, Am. J. Math., Volume 98 (1976) no. 1, pp. 263-284 | DOI | MR | Zbl
[9] On the structure of certain Galois groups, Invent. Math., Volume 47 (1978) no. 1, pp. 85-99 | DOI | MR | Zbl
[10] Iwasawa theory – past and present, Class field theory – its centenary and prospect (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | MR | Zbl
[11] On the structure of certain Galois cohomology groups, Doc. Math. (2006), pp. 335-391 | MR | Zbl
[12] On the -ranks of tamely ramified Iwasawa modules, Int. J. Number Theory, Volume 9 (2013) no. 6, pp. 1491-1503 | DOI | Zbl
[13] On tamely ramified Iwasawa modules for -extensions of imaginary quadratic fields, Tokyo J. Math., Volume 37 (2014) no. 2, pp. 405-431 | MR | Zbl
[14] A note on class numbers of algebraic number fields, Abh. Math. Semin. Univ. Hamb., Volume 20 (1956) no. 3-4, pp. 257-258 | DOI | MR | Zbl
[15] Sur les formules asymptotiques le long des -extensions, Ann. Math. Qué, Volume 37 (2013) no. 1, pp. 63-78 | DOI | MR | Zbl
[16] On pseudo-isomorphism classes of tamely ramified Iwasawa modules over imaginary quadratic fields, Acta Arith., Volume 180 (2017) no. 2, pp. 171-182 | DOI | MR | Zbl
[17] Iwasawa modules for -extensions of algebraic number fields, University of Washington (USA) (1986) (Ph. D. Thesis)
[18] Tame pro- Galois groups and the basic -extension, Trans. Am. Math. Soc., Volume 370 (2018) no. 4, pp. 2423-2461 | DOI | MR | Zbl
[19] On tame pro- Galois groups over basic -extensions, Math. Z., Volume 273 (2013) no. 3-4, pp. 1161-1173 | DOI | MR | Zbl
[20] Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006, viii+559 pages | Numdam | Zbl
[21] Formations de classes et modules d’Iwasawa, Number theory (Noordwijkerhout, 1983) (Lecture Notes in Mathematics), Volume 1068, Springer, 1983, pp. 167-185 | Zbl
[22] A note on the capitulation in -extensions, Proc. Japan Acad., Ser. A, Volume 71 (1995) no. 9, pp. 218-219 | MR | Zbl
[23] The class group of -extensions over totally real number fields, Tôhoku Math. J., Volume 49 (1997) no. 3, pp. 431-435 | MR | Zbl
[24] Iwasawa invariants of -extensions over an imaginary quadratic field, Class field theory – its centenary and prospect (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 387-399 | DOI | MR | Zbl
[25] Non-abelian Iwasawa theory of -extensions, Young Philosophers in Number Theory, Volume 1256, Sūrikaisekikenkyūsho Kōkyūroku, 2002, pp. 25-37 | MR | Zbl
[26] Non-abelian Iwasawa theory of -extensions, J. Reine Angew. Math., Volume 602 (2007), pp. 59-94 | MR | Zbl
[27] Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. Fr., Nouv. Sér., Volume 17 (1984), pp. 1-130 | Zbl
[28] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | MR | Zbl
[29] Free pro- extensions of number fields (preprint)
Cité par Sources :