Constructions of some perfect integral lattices with minimum 4
Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 3, pp. 655-687.

We construct several families of perfect sublattices with minimum 4 of d . In particular, the number of d-dimensional perfect integral lattices with minimum 4 grows faster than d k for every exponent k.

Cet article présente des constructions de plusieurs familles de sous-réseaux parfaits de d avec minimum 4. En particulier, le nombre de tels réseaux parfaits de dimension d croît plus vite que tout polynôme en d.

DOI: 10.5802/jtnb.918
Classification: 11H55, 11T06, 20K01, 05B30, 05E30
Keywords: Perfect lattice, finite abelian group, projective plane, equiangular system, Schläfli graph, Sidon set, Craig lattice
Bacher, Roland 1

1 Univ. Grenoble Alpes, Institut Fourier 621 Avenue Centrale 38041 Saint-Martin-d’Hères FRANCE
@article{JTNB_2015__27_3_655_0,
     author = {Bacher, Roland},
     title = {Constructions of some perfect integral lattices with minimum $4$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {655--687},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {3},
     year = {2015},
     doi = {10.5802/jtnb.918},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.918/}
}
TY  - JOUR
AU  - Bacher, Roland
TI  - Constructions of some perfect integral lattices with minimum $4$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2015
SP  - 655
EP  - 687
VL  - 27
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.918/
DO  - 10.5802/jtnb.918
LA  - en
ID  - JTNB_2015__27_3_655_0
ER  - 
%0 Journal Article
%A Bacher, Roland
%T Constructions of some perfect integral lattices with minimum $4$
%J Journal de théorie des nombres de Bordeaux
%D 2015
%P 655-687
%V 27
%N 3
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.918/
%R 10.5802/jtnb.918
%G en
%F JTNB_2015__27_3_655_0
Bacher, Roland. Constructions of some perfect integral lattices with minimum $4$. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 3, pp. 655-687. doi : 10.5802/jtnb.918. http://www.numdam.org/articles/10.5802/jtnb.918/

[1] N. D. Elkies, « Answer to Mathoverflow question: A curious identity related to finite fields », http://mathoverflow.net/questions/158769.

[2] J. Martinet, Les réseaux parfaits des espaces euclidiens, Mathématiques. [Mathematics], Masson, Paris, 1996, iv+439 pages. | MR | Zbl

[3] —, Perfect lattices in Euclidean spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327, Springer-Verlag, Berlin, 2003, xxii+523 pages. | MR

Cited by Sources: