For each natural number we determine the average order of the elements in a cyclic group of order . We show that more than half of the contribution to comes from the primitive elements of order . It is therefore of interest to study also the function . We determine the mean behavior of , , , and also consider these functions in the multiplicative groups of finite fields.
Pour chaque entier naturel , nous déterminons l’ordre moyen des éléments du groupe cyclique d’ordre . Nous montrons que plus de la moitié de la contribution à provient des éléments primitifs d’ordre . Il est par conséquent intéressant d’étudier également la fonction . Nous déterminons le comportement moyen de , , et considérons aussi ces fonctions dans le cas du groupe multiplicatif d’un corps fini.
von zur Gathen, Joachim 1 ; Knopfmacher, Arnold 2 ; Luca, Florian 3 ; Lucht, Lutz G. 4 ; Shparlinski, Igor E. 5
@article{JTNB_2004__16_1_107_0,
author = {von zur Gathen, Joachim and Knopfmacher, Arnold and Luca, Florian and Lucht, Lutz G. and Shparlinski, Igor E.},
title = {Average order in cyclic groups},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {107--123},
year = {2004},
publisher = {Universit\'e Bordeaux 1},
volume = {16},
number = {1},
doi = {10.5802/jtnb.436},
zbl = {1079.11003},
mrnumber = {2145575},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.436/}
}
TY - JOUR AU - von zur Gathen, Joachim AU - Knopfmacher, Arnold AU - Luca, Florian AU - Lucht, Lutz G. AU - Shparlinski, Igor E. TI - Average order in cyclic groups JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 107 EP - 123 VL - 16 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.436/ DO - 10.5802/jtnb.436 LA - en ID - JTNB_2004__16_1_107_0 ER -
%0 Journal Article %A von zur Gathen, Joachim %A Knopfmacher, Arnold %A Luca, Florian %A Lucht, Lutz G. %A Shparlinski, Igor E. %T Average order in cyclic groups %J Journal de théorie des nombres de Bordeaux %D 2004 %P 107-123 %V 16 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.436/ %R 10.5802/jtnb.436 %G en %F JTNB_2004__16_1_107_0
von zur Gathen, Joachim; Knopfmacher, Arnold; Luca, Florian; Lucht, Lutz G.; Shparlinski, Igor E. Average order in cyclic groups. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 107-123. doi: 10.5802/jtnb.436
[1] T. M. Apostol (1976), Introduction to Analytic Number Theory. Springer-Verlag, New York. | Zbl | MR
[2] P. T. Bateman (1972) . The distribution of values of the Euler function. Acta Arithmetica 21, 329–345. | Zbl | MR
[3] C. K. Caldwell & Y. Gallot (2000), Some results for and . Preprint.
[4] J. R. Chen (1973), On the representation of a large even integer as a sum of a prime and a product of at most two primes. Scientia Sinica 16, 157–176. | Zbl | MR
[5] P. D. T. A. Elliott (1985), Arithmetic functions and integer products, volume 272 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York. | Zbl | MR
[6] K. Ford (1999), The number of solutions of . Annals of Mathematics 150, 1–29. | Zbl | MR
[7] H. Halberstam & H.E. Richert (1974), Sieve Methods. Academic Press. | Zbl | MR
[8] G. H. Hardy & E. M. Wright (1962), An introduction to the theory of numbers. Clarendon Press, Oxford. 1st edition 1938. | Zbl | MR
[9] K.-H. Indlekofer (1980), A mean-value theorem for multiplicative functions. Mathematische Zeitschrift 172, 255–271. | Zbl | MR
[10] K.-H. Indlekofer (1981), Limiting distributions and mean-values of multiplicative arithmetical functions. Journal für die reine und angewandte Mathematik 328, 116–127. | Zbl | MR
[11] W. Keller (2000). Private communication.
[12] D. G. Kendall & R. A. Rankin (1947), On the number of Abelian groups of a given order. Quarterly Journal of Mathematics 18, 197–208. | Zbl | MR
[13] J. Knopfmacher (1972), Arithmetical properties of finite rings and algebras, and analytic number theory. II. Journal für die reine und angewandte Mathematik 254, 74–99. | Zbl | MR
[14] J. Knopfmacher (1973), A prime divisor function. Proceedings of the American Mathematical Society 40, 373–377. | Zbl | MR
[15] J. Knopfmacher & J. N. Ridley (1974), Prime-Independent Arithmetical Functions. Annali di Matematica 101(4), 153–169. | Zbl | MR
[16] W. LeVeque (1977), Fundamentals of Number Theory. Addison-Wesley. | Zbl | MR
[17] H. L. Montgomery (1970), Primes in arithmetic progressions. Michigan Mathematical Journal 17, 33–39. | Zbl | MR
[18] H. L. Montgomery (1987), fluctuations in the mean of Euler’s phi function. Proceedings of the Indian Academy of Sciences (Mathematical Sciences) 97(1-3), 239–245. | Zbl | MR
[19] A. G. Postnikov (1988), Introduction to analytic number theory. Volume 68 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI. | Zbl | MR
[20] H. Riesel & R. C. Vaughan (1983), On sums of primes. Arkiv for Matematik 21(1), 46–74. | Zbl | MR
[21] I. E. Shparlinski (1990), Some arithmetic properties of recurrence sequences. Matematicheskie Zametki 47(6), 124–131. (in Russian); English translation in Mathematical Notes 47, (1990), 612–617. | Zbl | MR
[22] P. J. Stephens (1969), An Average Result for Artin’s Conjecture. Mathematika 16(31), 178–188. | Zbl | MR
[23] A. Walfisz (1963), Weylsche Exponentialsummen in der neueren Zahlentheorie. Number 15 in Mathematische Forschungsberichte. VEB Deutscher Verlag der Wissenschaften, Berlin. | Zbl | MR
Cité par Sources :






