@article{JSFS_2005__146_4_23_0,
author = {Alvarez, Alexander and Olivares, Pablo},
title = {M\'ethodes d'estimation pour des lois stables avec des applications en finance},
journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique},
pages = {23--54},
year = {2005},
publisher = {Soci\'et\'e fran\c{c}aise de statistique},
volume = {146},
number = {4},
language = {fr},
url = {https://www.numdam.org/item/JSFS_2005__146_4_23_0/}
}
TY - JOUR AU - Alvarez, Alexander AU - Olivares, Pablo TI - Méthodes d'estimation pour des lois stables avec des applications en finance JO - Journal de la Société française de statistique PY - 2005 SP - 23 EP - 54 VL - 146 IS - 4 PB - Société française de statistique UR - https://www.numdam.org/item/JSFS_2005__146_4_23_0/ LA - fr ID - JSFS_2005__146_4_23_0 ER -
%0 Journal Article %A Alvarez, Alexander %A Olivares, Pablo %T Méthodes d'estimation pour des lois stables avec des applications en finance %J Journal de la Société française de statistique %D 2005 %P 23-54 %V 146 %N 4 %I Société française de statistique %U https://www.numdam.org/item/JSFS_2005__146_4_23_0/ %G fr %F JSFS_2005__146_4_23_0
Alvarez, Alexander; Olivares, Pablo. Méthodes d'estimation pour des lois stables avec des applications en finance. Journal de la Société française de statistique, Tome 146 (2005) no. 4, pp. 23-54. https://www.numdam.org/item/JSFS_2005__146_4_23_0/
[1] , and (1983). Fractiles of the stable laws. Technical report, Rensselaer Polytechnic Institute, Troy, NY.
[2] , and (1976). A Method for simulating stable random variables. Journal of the American Statistical Association, 71, 340-344. | Zbl | MR
[3] (1971). Stable Distributions in Statistical Inference. PhD. thesis, Dept. of Statistics, Yale University. | MR
[4] (1973). On the Asymptotic Normality of the Maximum Likelihood Estimate when Sampling from a Stable Distribution. Annals of Statistics, 1, 948-957. | Zbl | MR
[5] (1965). The behavior of stock prices. J. of Business, 38, 34-105.
[6] and (1971). Parameters Estimates for Symmetric Stable Distributions. Journal of the American Statistical Association, 66, 331-339. | Zbl
[7] (1990). An efficient resuit for the empirical characteristic function in stationary time-series models. The Canadian Journal of Statistics, 18, 155-161. | Zbl | MR
[8] and (1981). On the efficiency of empirical characteristic function procedures. J. Roy. Stat. Soc, Ser B, 43, 20-27. | Zbl | MR
[9] and (1981). On efficient inference in symmetric stable laws and processes. In M. Csorgo, Dawson, D.A., Rao, N.J.K. and Saleh, A..K. (Editors) Statistics and Related topics, 109-122. | Zbl | MR
[10] , and (2004). Estimation of Stable Distributions by Indirect Inference. CORE Mimeo.
[11] and (1987). Slow variation with remainder : Theory and applications, Quarterly Journal of Mathematics, Oxford, Second Ser, 38, 45-71. | Zbl | MR
[12] , , and (1979). Probability weighted moments : definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15, 1049-1054.
[13] (1975). A simple approach to inference about the tail of a distribution. Annals of Statistics, 3, 1163-1174. | Zbl | MR
[14] and (1973). Tables and graphs of the stable probability fonctions, J. Res. Nat. Bureau Standars, B. Math. Sci., 77b, 143-198. | Zbl | MR
[15] and (1997). Regional Frequency Analysis : an approach based on L-moments, Cambridge University Press, Cambridge, U.K.
[16] (1990). L-moments : analysis and estimation of distributions using linear combinations of order statistics. J.R. Statist. Soc. B, 52, 105-124. | Zbl | MR
[17] (1975). Stable densities under change of scale and total variations inequalities. Annals of Probability 3, 697-707. | Zbl | MR
[18] , (2002). Empirical Characteristic Function in Time Series Estimation. Econometric Theory, 18, 691-721. | Zbl | MR
[19] and (1998). Characteristic function based estimation of stable parameters. In Adler, R., Feldman, R. and Taqqu, M. (eds.) A Practical Guide to Heavy Tailed Data, Birkhauser, Boston, MA, 311-335. | Zbl
[20] (1980). Regression-type estimation of the parameters of stable laws. Journal of the American Statistical Association, 75, 918-928. | Zbl | MR
[21] (1981). An iterative procedure for the estimation of the parameters of stable laws, Communications in Statistics. Simulation and Computation, 10, 17-28. | Zbl | MR
[22] and (1975). Estimation of stable law parameters : stock price behavior application. J. Amer. Statist. Assoc, 70, 690-697. | Zbl | MR
[23] (1924). Théorie des erreurs. La loi de Gauss et les lois exceptionnelles. Bulletin de la Société Mathématique de France, 52, 49-85. | MR | JFM | Numdam
[24] et (2002). Les marchés fractals, PUF, Paris.
[25] (1963). The Variation of Certain Speculative Prices. Journal of Business, 26, 394-419.
[26] , , (2001). Subordinated exchange rate models : evidence for heavy tailed distributions and long-range dependence. Stable non-Gaussian models in finance and econometrics. Math. Comp. Modelling, 34, no. 9-11, 955-1001. | Zbl | MR
[27] (1982). Laws of large numbers for sums of extreme values. The Annals of Probability, 10, 754-764. | Zbl | MR
[28] (1986). Simple consistent estimators of stable distribution parameters. Communications in Statistics. Simulation and Computation, 15, 1109-1136. | Zbl | MR
[29] (1997). Measuring tail thickness in order to estimate the stable index α : a critique. Bussiness and Economie Statistics, 15, 74-81. | MR
[30] and (1998). Tables of the maximally-skewed stable distributions. In R. Adler, R. Feldman, and M. Taqqu (Eds.), A Practical Guide to Heavy Tails : Statistical Techniques for Analyzing Heavy Tailed Distributions, 501-508. | Zbl | MR
[31] , (2001). Stable non-Gaussian models in finance and econometrics, Math. Comp. Modelling 34 no. 9-11. | Zbl
[32] (1996). An algorithm for evaluating stable densities in Zolotarev's (M) parametrization. Preprint American University Washington.
[33] ( 1996.) Numerical approximation of stable densities and distribution functions. Preprint American University Washington.
[34] (1992). Cumulative distribution function values for symmetric standardized stable distributions. Statist. Simula. 21, 458-492. | Zbl
[35] and (1993). Tables of the fractiles of the stable law. Technical Report, Renesselaer Polytechnic Institute, Troy, NY.
[36] , and (1975). The estimation of the parameters of the stable laws. Biometrika, 62, 163-170. | Zbl | MR
[37] (1972). Applied Multivariate Analysis. Holt, Rinehart and Winston, Inc., New York. | Zbl | MR
[38] (1972). Estimation in univariate and multivariate stable distributions. J. Amer. Stat. Assoc., 67, 842-846. | Zbl | MR
[39] (1992). Which measures of skewness and kurtosis are best ? Statistics in Medicine, 11, 333-343.
[40] , (1994). Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance Chapman &Hall. | Zbl | MR
[41] and (1993). L-moment diagrams should replace product-moment diagrams. Water Resources Research, 29, 1745-1752.
[42] (1996). On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statistics and Probability Letters, 28, 165-171. | Zbl | MR
[43] (2001). Performance of the estimators of Stable Laws. Working Paper.
[44] (1975). Tables of cumulative distribution function for symmetric stable distributions. Appl. Statistics, 24, 123-131. | MR
[45] (1966). On representation of stable laws by integrals. Selected Translation in Mathematical Statistics and Probability, 6, 84-88. | Zbl
[46] (1986). One-dimensional stable distributions, Trans. of Math. Monographs, AMS Vol. 65. | Zbl | MR





