In the context of uniformisation problems, we study projective varieties with klt singularities whose cotangent sheaf admits a projectively flat structure over the smooth locus. Generalising work of Jahnke-Radloff, we show that torus quotients are the only klt varieties with semistable cotangent sheaf and extremal Chern classes. An analogous result for varieties with nef normalised cotangent sheaves follows.
Dans le cadre des problèmes d’uniformisation, nous étudions les variétés projectives avec singularités klt dont le faisceau cotangent admet une structure projective plate sur le lieu lisse. En généralisant le travail de Jahnke-Radloff, nous montrons que les quotients des tores sont les seules variétés klt avec un faisceau cotangent semi-stable et des classes de Chern extrémales. Un résultat analogue pour les variétés avec un faisceau cotangent normalisé nef s’ensuit.
Accepted:
Published online:
Keywords: Bogomolov-Gieseker inequality, Abelian variety, klt singularities, Miyaoka-Yau inequality, stability, projective flatness, uniformisation
Mot clés : Inégalité de Bogomolov-Gieseker, variété abélienne, singularités klt, inégalité de Miyaoka-Yau, stabilité, platitude projective, uniformisation
@article{JEP_2021__8__1005_0, author = {Greb, Daniel and Kebekus, Stefan and Peternell, Thomas}, title = {Projectively flat klt varieties}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1005--1036}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.164}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.164/} }
TY - JOUR AU - Greb, Daniel AU - Kebekus, Stefan AU - Peternell, Thomas TI - Projectively flat klt varieties JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 1005 EP - 1036 VL - 8 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.164/ DO - 10.5802/jep.164 LA - en ID - JEP_2021__8__1005_0 ER -
%0 Journal Article %A Greb, Daniel %A Kebekus, Stefan %A Peternell, Thomas %T Projectively flat klt varieties %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 1005-1036 %V 8 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.164/ %R 10.5802/jep.164 %G en %F JEP_2021__8__1005_0
Greb, Daniel; Kebekus, Stefan; Peternell, Thomas. Projectively flat klt varieties. Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), pp. 1005-1036. doi : 10.5802/jep.164. http://www.numdam.org/articles/10.5802/jep.164/
[Akh95] Lie group actions in complex analysis, Aspects of Mathematics, E27, Friedr. Vieweg & Sohn, Braunschweig, 1995 | DOI | MR | Zbl
[Alp87] An elementary account of Selberg’s lemma, Enseign. Math. (2), Volume 33 (1987) no. 3-4, pp. 269-273 | DOI | MR | Zbl
[Amb05] The moduli -divisor of an lc-trivial fibration, Compositio Math., Volume 141 (2005) no. 2, pp. 385-403 | DOI | MR | Zbl
[Anc82] Faisceaux amples sur les espaces analytiques, Trans. Amer. Math. Soc., Volume 274 (1982) no. 1, pp. 89-100 | DOI | MR | Zbl
[BB70] On the zeros of meromorphic vector-fields, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 29-47 | DOI | Zbl
[BC15] Varieties fibred over abelian varieties with fibres of log general type, Adv. Math., Volume 270 (2015), pp. 206-222 | DOI | MR | Zbl
[Bea83] Variétés kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983) no. 4, pp. 755-782 | DOI | Zbl
[Bea00] Complex manifolds with split tangent bundle, Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 61-70 | DOI | Zbl
[BHPVdV04] Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[BS76] Algebraic methods in the global theory of complex spaces, Editura Academiei, Bucharest; John Wiley & Sons, London-New York-Sydney, 1976, 296 pages | Zbl
[Cam91] On twistor spaces of the class , J. Differential Geom., Volume 33 (1991) no. 2, pp. 541-549 | DOI | MR
[Car57] Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, pp. 90-102 | DOI | Zbl
[CCE15] Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire, Compositio Math., Volume 151 (2015) no. 2, pp. 351-376 | DOI | Zbl
[CKP12] Numerical character of the effectivity of adjoint line bundles, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 1, pp. 107-119 | DOI | Numdam | MR | Zbl
[Deb01] Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001 | DOI | Zbl
[Dem02] On the Frobenius integrability of certain holomorphic -forms, Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 93-98 | DOI | Zbl
[Dru00] Variétés algébriques dont le fibré tangent est totalement décomposé, J. reine angew. Math., Volume 522 (2000), pp. 161-171 | DOI | MR | Zbl
[Dru14] The Zariski-Lipman conjecture for log canonical spaces, Bull. London Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | MR | Zbl
[FG12] On canonical bundle formulas and subadjunctions, Michigan Math. J., Volume 61 (2012) no. 2, pp. 255-264 | DOI | MR | Zbl
[FL81] Connectivity and its applications in algebraic geometry, Algebraic geometry (Chicago, Ill., 1980) (Lect. Notes in Math.), Volume 862, Springer, Berlin, 1981, pp. 26-92 | DOI | MR | Zbl
[Fuj13] On maximal Albanese dimensional varieties, Proc. Japan Acad. Ser. A Math. Sci., Volume 89 (2013) no. 8, pp. 92-95 | DOI | MR | Zbl
[GKK10] Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties, Compositio Math., Volume 146 (2010), pp. 193-219 (A slightly extended version is available as arXiv:0808.3647) | DOI | MR | Zbl
[GKKP11] Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci., Volume 114 (2011) no. 1, pp. 87-169 (An extended version with additional graphics is available as arXiv:1003.2913) | DOI | Numdam | MR | Zbl
[GKP16] Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016) no. 10, pp. 1965-2004 | DOI | Zbl
[GKP20] Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, 2020 | arXiv
[GKPT19a] The Miyaoka-Yau inequality and uniformisation of canonical models, Ann. Sci. École Norm. Sup. (4), Volume 52 (2019) no. 6, pp. 1487-1535 | DOI | MR
[GKPT19b] Nonabelian Hodge theory for klt spaces and descent theorems for vector bundles, Compositio Math., Volume 155 (2019) no. 2, pp. 289-323 | DOI | MR | Zbl
[GKPT20] Harmonic metrics on Higgs sheaves and uniformization of varieties of general type, Math. Ann., Volume 378 (2020) no. 3-4, pp. 1061-1094 | DOI | MR | Zbl
[GKT18] Uniformisation of higher-dimensional varieties, Algebraic Geometry (Salt Lake City, 2015) (de Fernex, Tommaso; Hassett, Brendan; Mustaţă, Mircea; Olsson, Martin; Popa, Mihnea; Thomas, Richard, eds.) (Proc. Sympos. Pure Math.), Volume 97, American Mathematical Society, Providence, RI, 2018, pp. 277-308 | DOI | MR
[Gro61] Techniques de construction en géométrie analytique. V. Fibrés vectoriels, fibrés projectifs, fibrés en drapeaux, Séminaire Henri Cartan, Volume 13, no. 1, Secrétariat mathématique, Paris, 1960–1961, pp. 1-15 (Exp. no. 12)
[Har77] Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, 1977 | DOI | Zbl
[HM07] On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | DOI | MR | Zbl
[HO84] Classification theorems for almost homogeneous spaces, 9, Université de Nancy, Institut Élie Cartan, Nancy, 1984 | MR | Zbl
[JR13] Semistability of restricted tangent bundles and a question of I. Biswas, Internat. J. Math., Volume 24 (2013) no. 1, 1250122, 15 pages | DOI | MR | Zbl
[Kaw85a] Minimal models and the Kodaira dimension of algebraic fiber spaces, J. reine angew. Math., Volume 363 (1985), pp. 1-46 | DOI | MR | Zbl
[Kaw85b] Pluricanonical systems on minimal algebraic varieties, Invent. Math., Volume 79 (1985) no. 3, pp. 567-588 | DOI | MR | Zbl
[KM98] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl
[KMM87] Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 283-360 | DOI | MR | Zbl
[Kob87] Differential geometry of complex vector bundles, Publications of the Math. Society of Japan, 15, Iwanami Shoten and Princeton University Press, Princeton, NJ, 1987 | MR | Zbl
[Kol93] Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | DOI | MR | Zbl
[Kol95] Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1995 | DOI | Zbl
[KS21] Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities, J. Amer. Math. Soc., Volume 34 (2021) no. 2, p. 315-–368 | DOI
[Lai11] Varieties fibered by good minimal models, Math. Ann., Volume 350 (2011) no. 3, pp. 533-547 | DOI | MR | Zbl
[LT18] A characterization of finite quotients of abelian varieties, Internat. Math. Res. Notices (2018) no. 1, pp. 292-319 | DOI | MR | Zbl
[Nak98] Normalized tautological divisors of semi-stable vector bundles (1998) (RIMS preprint 1214, available at https://www.kurims.kyoto-u.ac.jp/preprint/preprint_y1998.html)
[Nak04] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004 | DOI | MR | Zbl
[Ray70] Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lect. Notes in Math., 119, Springer-Verlag, Berlin-New York, 1970 | DOI | Zbl
[Ros68] Picard variety of an isolated singular point, Rice Univ. Studies, Volume 54 (1968) no. 4, pp. 63-73 https://scholarship.rice.edu/handle/1911/62964 | MR | Zbl
[Sch16] Low degree Hodge theory for klt varieties, 2016 | arXiv
[ST71] Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math., 172, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl
[Tak03] Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math., Volume 14 (2003) no. 8, pp. 825-836 | DOI | MR | Zbl
[Vie82] Die Additivität der Kodaira Dimension für projektive Faserräume über Varietäten des allgemeinen Typs, J. reine angew. Math., Volume 330 (1982), pp. 132-142 | DOI | Zbl
Cited by Sources: