Spectral theory of damped quantum chaotic systems
Journées équations aux dérivées partielles (2011), article no. 9, 23 p.

We investigate the spectral distribution of the damped wave equation on a compact Riemannian manifold, especially in the case of a metric of negative curvature, for which the geodesic flow is Anosov. The main application is to obtain conditions (in terms of the geodesic flow on X and the damping function) for which the energy of the waves decays exponentially fast, at least for smooth enough initial data. We review various estimates for the high frequency spectrum in terms of dynamically defined quantities, like the value distribution of the time-averaged damping. We also present a new condition for a spectral gap, depending on the set of minimally damped trajectories.

DOI: 10.5802/jedp.81
Nonnenmacher, Stéphane 1

1 Institut de Physique théorique, CEA-Saclay, unité de recherche associée au CNRS, 91191 Gif-sur-Yvette, France
@article{JEDP_2011____A9_0,
     author = {Nonnenmacher, St\'ephane},
     title = {Spectral theory of damped quantum chaotic systems},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {9},
     pages = {1--23},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2011},
     doi = {10.5802/jedp.81},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.81/}
}
TY  - JOUR
AU  - Nonnenmacher, Stéphane
TI  - Spectral theory of damped quantum chaotic systems
JO  - Journées équations aux dérivées partielles
PY  - 2011
SP  - 1
EP  - 23
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.81/
DO  - 10.5802/jedp.81
LA  - en
ID  - JEDP_2011____A9_0
ER  - 
%0 Journal Article
%A Nonnenmacher, Stéphane
%T Spectral theory of damped quantum chaotic systems
%J Journées équations aux dérivées partielles
%D 2011
%P 1-23
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.81/
%R 10.5802/jedp.81
%G en
%F JEDP_2011____A9_0
Nonnenmacher, Stéphane. Spectral theory of damped quantum chaotic systems. Journées équations aux dérivées partielles (2011), article  no. 9, 23 p. doi : 10.5802/jedp.81. http://www.numdam.org/articles/10.5802/jedp.81/

[Anan08] N. Anantharaman, Entropy and the localization of eigenfunctions, Ann. Math. (2) 168, 435–475 (2008) | MR | Zbl

[Anan10] N. Anantharaman, Spectral deviations for the damped wave equation, GAFA 20 (2010) 593–626 | MR | Zbl

[AN1] N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier 57(7), 2465–2523 (2007) | EuDML | Numdam | MR | Zbl

[AschLeb] M. Asch and G. Lebeau, The Spectrum of the Damped Wave Operator for a Bounded Domain in 2 , Exper. Math. 12 (2003) 227–241 | EuDML | MR | Zbl

[Bro10] S. Brooks, On the entropy of quantum limits for 2-dimensional cat maps, Commun. Math. Phys. 293 (2010) 231–255 | MR | Zbl

[Bur98] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180 (1998) 1–29 | MR | Zbl

[BuHi07] N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett. 14 (2007) 35-47 | MR | Zbl

[Chris07] H. Christianson, Semiclassical Non-concentration near Hyperbolic Orbits, J. Funct. Anal. 246 (2007) 145–195; Corrigendum, J. Funct. Anal. 258 (2010) 1060–1065 | MR | Zbl

[Chris09] H. Christianson, Applications of Cutoff Resolvent Estimates to the Wave Equation, Math. Res. Lett. Vol. 16 (2009) 577–590 | MR | Zbl

[Chris11] H. Christianson, Quantum Monodromy and Non-concentration Near a Closed Semi-hyperbolic Orbit, Trans. Amer. Math. Soc. 363 (2011) 3373–3438 | MR

[EvZw] C.L. Evans and M. Zworski, Lectures on semiclassical analysis, v.0.75

[Hit03] M.Hitrik, Eigenfrequencies and expansions for damped wave equations, Meth. Appl. Anal. 10 (2003) 1–22 | MR | Zbl

[HitSjo08] M. Hitrik and J. Sjöstrand, Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2, Ann. Sci. E.N.S. 41 (2008) 511-571 | Numdam | MR | Zbl

[HitSjo11] M. Hitrik and J. Sjöstrand, Diophantine tori and Weyl laws for non-selfadjoint operators in dimension two, preprint 2011, arXiv:1102.0889

[HSVN07] M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, Amer. J. Math. 129 (2007) 105-182 | MR | Zbl

[KatHas95] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge UP, 1995 | MR | Zbl

[Kif90] Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc. 321 (1990) 505–524. | MR | Zbl

[KoTa94] H. Koch and D. Tataru, On the spectrum of hyperbolic semigroups, Comm. Partial Differential Equations, 20, No 5-6, 901-937 (1995) | MR | Zbl

[Leb93] G.Lebeau, Equation des ondes amorties, Algebraie and geometric methods in mathematical physics, (Kaciveli 1993), 73-109, Math. Phys. Stud. 19, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[MarMat84] A.S. Markus and V.I. Matsaev, Comparison theorems for spectra of linear operators, and spectral asymptotics, Trans. Moscow Math. Soc. (1984) 139–187. Russian original in Trudy Moscow. Obshch. 45 (1982), 133-181 | MR | Zbl

[NZ2] S. Nonnenmacher and M. Zworski, Quantum decay rates in chaotic scattering, Acta Math 203 (2009) 149–233 | MR

[NZ3] S. Nonnenmacher and M. Zworski, Semiclassical Resolvent Estimates in Chaotic Scattering, Appl. Math. Res. eXpr. 2009, Article ID abp003 | MR | Zbl

[RauTay75] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Commun. Pure Appl. Math. 28 (1975) 501-523 | MR | Zbl

[Ren94] M. Renardy, On the linear stability of hyperbolic PDEs and viscoelastic flows, Zeit. f. angew. Math. Phys. 45 (1994) 854-865 | MR | Zbl

[Riv10] G. Rivière, Entropy of semiclassical measures in dimension 2, Duke Math. J. 155 (2010) 271-335 | MR

[Riv11] G. Rivière, Delocalization of slowly damped eigenmodes on Anosov manifolds, preprint 2011

[Sche10] E. Schenck, Energy decay for the damped wave equation under a pressure condition, Commun. Math. Phys. 300, 375–410 (2010) | MR | Zbl

[Sche11] E. Schenck, Exponential stabilization without geometric control, preprint 2010 | MR

[Sjo00] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci. 36 (2000) 573-611 | MR | Zbl

[SjoZwo07] J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137 (2007) 381–459 | MR | Zbl

[Zel09] S. Zelditch, Recent developments in mathematical quantum chaos, in Current Developments in Mathematics, 2009, D.Jerison, B.Mazur, T.Mrowka, W.Schmid, R.Stanley, S-T Yau (eds.), International Press 2009

Cited by Sources: