Normal form of the wave group and inverse spectral theory
Journées équations aux dérivées partielles (1998), article no. 15, 18 p.

This talk will describe some results on the inverse spectral problem on a compact riemannian manifold (possibly with boundary) which are based on V. Guillemin's strategy of normal forms. It consists of three steps : first, put the wave group into a normal form around each closed geodesic. Second, determine the normal form from the spectrum of the laplacian. Third, determine the metric from the normal form. We will try to explain all three steps and to illustrate with simple examples such as surfaces of revolution.

@article{JEDP_1998____A15_0,
     author = {Zelditch, Steven},
     title = {Normal form of the wave group and inverse spectral theory},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {15},
     publisher = {Universit\'e de Nantes},
     year = {1998},
     zbl = {01808724},
     mrnumber = {99h:58197},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1998____A15_0/}
}
TY  - JOUR
AU  - Zelditch, Steven
TI  - Normal form of the wave group and inverse spectral theory
JO  - Journées équations aux dérivées partielles
PY  - 1998
DA  - 1998///
PB  - Université de Nantes
UR  - http://www.numdam.org/item/JEDP_1998____A15_0/
UR  - https://zbmath.org/?q=an%3A01808724
UR  - https://www.ams.org/mathscinet-getitem?mr=99h:58197
LA  - en
ID  - JEDP_1998____A15_0
ER  - 
Zelditch, Steve. Normal form of the wave group and inverse spectral theory. Journées équations aux dérivées partielles (1998), article  no. 15, 18 p. http://www.numdam.org/item/JEDP_1998____A15_0/

[B.B] V.M.Babic, V.S. Buldyrev, Short-Wavelength Diffraction Theory, Springer Series on Wave Phenomena 4, Springer-Verlag, New York (1991) | MR 94f:78004 | Zbl 0742.35002

[CV.1] Y. Colin De Verdière, Sur les longueurs des trajectoires périodiques d'un billard, In : P. Dazord and N. Desolneux-Moulis (eds.) Géométrie Symplectique et de Contact : Autour du Théorème de Poincaré-Birkhoff. Travaux en Cours, Sém. Sud-Rhodanien de Géométrie III Paris : Herman (1984), 122-139. | MR 86a:58078 | Zbl 0599.58039

[CV.2] Y. Colin De Verdière, Spectre conjoint d'opérateurs pseudo-différentiels qui commutent II. Le cas intégrable, Math.Zeit. 171 (1980), 51-73. | EuDML 172922 | MR 81i:58046 | Zbl 0478.35073

[CV.3] Y. Colin De Verdière, Quasi-modes sur les variétés Riemanniennes, Inv. Math 43 (1977), 15-52. | EuDML 142506 | MR 58 #18615 | Zbl 0449.53040

[D.G] J.J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math. 24 (1975), 39-80. | EuDML 142329 | MR 53 #9307 | Zbl 0307.35071

[F.Z] G. Forni and S.Zelditch, Inverse spectral problem for surfaces of revolution II (in preparation).

[F.G] J.P. Francoise and V. Guillemin, On the period spectrum of a symplectic mapping, J. Fun. Anal. 100, (1991) 317-358. | MR 92j:58083 | Zbl 0739.58020

[Go] C.Gordon, CBMS Lectures (1996).

[G.1] V. Guillemin, Wave trace invariants, Duke Math. J. 83 (1996), 287-352. | MR 97f:58131 | Zbl 0858.58051

[G.2] V. Guillemin, Wave-trace invariants and a theorem of Zelditch, Duke Int.Math.Res.Not. 12 (1993), 303-308. | MR 95f:58077 | Zbl 0798.58073

[G.M] V. Guillemin and R.B.Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math.32 (1979), 204-232. | MR 80j:58066 | Zbl 0421.35082

[HoI-IV] L.Hörmander, Theory of Linear Partial Differential Operators I-IV, Springer-Verlag, New York (1985).

[Kac] M.Kac, On applying mathematics : reflections and examples, in Mark Kack : Probability, Number Theory, and Statistical Physics, K.Baclawski and M.D.Donskder (eds.), MIT Press, Cambridge (1979). | Zbl 0275.00009

[M.M] S.Marvizi and R.B.Melrose, Spectral invariants of convex planar regions, J. Diff.Geom. 17 (1982), 475-502. | MR 85d:58084 | Zbl 0492.53033

[M] R.B. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, Journal D'Analyse Math. XLIV (1984/1985), 134-182. | MR 87e:58199 | Zbl 0599.35139

[P] G.Popov, Length spectrum invariants of Riemannian manifolds, Math.Zeit. 213 (1993), 311-351. | MR 94g:58174 | Zbl 0804.53068

[Sj] J.Sjöstrand, Semi-excited states in nondegenerate potential wells, Asym.An.6 (1992) 29-43. | MR 93m:35052 | Zbl 0782.35050

[W] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883-892. | MR 58 #2919 | Zbl 0385.58013

[Z.1] S.Zelditch, Wave invariants at elliptic closed geodesics, Geom.Anal.Fun.Anal. 7 (1997), 145-213. | MR 98f:58191 | Zbl 0876.58010

[Z.2] S.Zelditch, Wave invariants for non-degenerate closed geodesics, Geom.Anal.Fun.Anal. 8 (1998), 179-217. | MR 98m:58136 | Zbl 0908.58022

[Z.3] S.Zelditch, Inverse spectral problem for surfaces of revolution (to appear in J.Diff.Geom.). | Zbl 0938.58027