We consider a recently defined notion of k-abelian equivalence of words by concentrating on avoidance problems. The equivalence class of a word depends on the numbers of occurrences of different factors of length k for a fixed natural number k and the prefix of the word. We have shown earlier that over a ternary alphabet k-abelian squares cannot be avoided in pure morphic words for any natural number k. Nevertheless, computational experiments support the conjecture that even 3-abelian squares can be avoided over ternary alphabets. In this paper we establish the first avoidance result showing that by choosing k to be large enough we have an infinite k-abelian square-free word over three letter alphabet. In addition, this word can be obtained as a morphic image of a pure morphic word.
Keywords: combinatorics on words, k-abelian equivalence, square-freeness
@article{ITA_2014__48_3_307_0,
author = {Huova, Mari},
title = {Existence of an infinite ternary 64-abelian square-free word},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {307--314},
year = {2014},
publisher = {EDP Sciences},
volume = {48},
number = {3},
doi = {10.1051/ita/2014012},
mrnumber = {3302490},
zbl = {1297.68192},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2014012/}
}
TY - JOUR AU - Huova, Mari TI - Existence of an infinite ternary 64-abelian square-free word JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2014 SP - 307 EP - 314 VL - 48 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2014012/ DO - 10.1051/ita/2014012 LA - en ID - ITA_2014__48_3_307_0 ER -
%0 Journal Article %A Huova, Mari %T Existence of an infinite ternary 64-abelian square-free word %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2014 %P 307-314 %V 48 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2014012/ %R 10.1051/ita/2014012 %G en %F ITA_2014__48_3_307_0
Huova, Mari. Existence of an infinite ternary 64-abelian square-free word. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 3, pp. 307-314. doi: 10.1051/ita/2014012
[1] and , Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). | Zbl | MR
[2] and , Finite-Repetition threshold for infinite ternary words, in 8th International Conference WORDS 2011, edited by P. Ambroz, S. Holub and Z. Masáková. EPTCS 63 (2011) 37-43.
[3] , Unavoidable binary patterns. Acta Informatica 30 (1993) 385-395. | Zbl | MR
[4] and , Combinatorics of words, in vol. 1 of Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer (1997) 329-438. | Zbl | MR
[5] , and , Alternating iteration of morphisms and the Kolakoski sequence, in Lindenmayer Systems, edited by G. Rozenberg and A. Salomaa. Springer (1992) 93-106. | Zbl | MR
[6] , Open problems in pattern avoidance. Amer. Math. Monthly 100 (1993) 790-793. | Zbl | MR
[7] , Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory Ser. A 27 (1979) 181-185. | Zbl | MR
[8] , Strongly asymmetric sequences generated by a finite number of symbols. Dokl. Akad. Nauk SSSR 179 (1968) 1268-1271; English translation in Soviet Math. Dokl. 9 (1968) 536-539. | Zbl | MR
[9] and , On Unavoidability of k-abelian Squares in Pure Morphic Words. J. Integer Sequences, being bublished. | Zbl
[10] , and , Problems in between words and abelian words: k-abelian avoidability, in Formal and Natural Computing Honoring the 80th Birthday of Andrzej Ehrenfeucht, edited by G. Rozenberg and A. Salomaa. Theoret. Comput. Sci. 454 (2012) 172-177. | Zbl | MR
[11] , , and , Local squares, periodicity and finite automata, in Rainbow of Computer Science, edited by C.S. Calude, G. Rozenberg and A. Salomaa. Vol. 6570 of Lect. Notes Comput. Sci. Springer (2011) 90-101. | MR
[12] , Abelian squares are avoidable on 4 letters, in Proc. ICALP 1992, edited by W. Kuich. Vol. 623 of Lect. Notes Comput. Sci. Springer (1992) 41-52. | MR
[13] , Combinatorics on words, Addison-Wesley (1983). | Zbl | MR
[14] , Algebraic combinatorics on words. Cambridge University Press (2002). | Zbl | MR
[15] and , 5-abelian cubes are avoidable on binary alphabets, in the conference the 14th Mons Days of Theoretical Computer Science (2012).
[16] , Non-repetitive sequences. Proc. Cambridge Philos. Soc. 68 (1970) 267-274. | Zbl | MR
[17] , Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906) 1-22. | JFM
[18] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1-67. | JFM
Cité par Sources :





