Conditional Lindenmayer systems with subregular conditions: The non-extended case
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 1, pp. 127-147.

We consider conditional tabled Lindenmayer sytems without interaction, where each table is associated with a regular set and a table can only be applied to a sentential form which is contained in its associated regular set. We study the effect to the generative power, if we use instead of arbitrary regular languages only finite, nilpotent, monoidal, combinational, definite, ordered, union-free, star-free, strictly locally testable, commutative regular, circular regular, and suffix-closed regular languages. Essentially, we prove that the hierarchy of language families obtained from conditional Lindenmayer systems with subregular conditions is almost identical to the hierarchy of families of subregular languages.

DOI : https://doi.org/10.1051/ita/2014007
Classification : 68Q42,  68Q45
Mots clés : Lindenmayer systems, controlled derivations
@article{ITA_2014__48_1_127_0,
     author = {Dassow, J\"urgen and Rudolf, Stefan},
     title = {Conditional Lindenmayer systems with subregular conditions: The non-extended case},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {127--147},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {1},
     year = {2014},
     doi = {10.1051/ita/2014007},
     mrnumber = {3195792},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2014007/}
}
Dassow, Jürgen; Rudolf, Stefan. Conditional Lindenmayer systems with subregular conditions: The non-extended case. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 1, pp. 127-147. doi : 10.1051/ita/2014007. http://www.numdam.org/articles/10.1051/ita/2014007/

[1] J. Castellanos, C. Martín-Vide, V. Mitrana and J.M. Sempere, Solving NP-Complete Problems With Networks of Evolutionary Processors. IWANN'01: Proc. of the 6th International Work-Conference on Artificial and Natural Neural Networks. Vol. 2084 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (2001) 621-628. | Zbl 0982.68767

[2] E. Csuhaj-Varjú and A. Salomaa, Networks of Parallel Language Processors. New Trends in Formal Languages. Vol. 1218 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (1997) 299-318. | MR 1605238

[3] K. Čulik Ii and H.A. Maurer, Tree controlled grammars. Comput. 19 (1977) 129-139. New Trends in Formal Languages - Control, Cooperation, and Combinatorics. Vol.1218 of Lect. Notes Comput. Sci. Springer-Verlag Berlin (1997) 299-318. | MR 464718 | Zbl 0363.68108

[4] J. Dassow, Subregularly controlled derivations: the context-free case. Rostocker Mathematisches Kolloquium 34 (1988) 61-70. | MR 968639 | Zbl 0651.68096

[5] J. Dassow, Conditional grammars with restrictions by syntactic parameters. Words, Semigroups, Transductions, edited by M. Ito, Gh. Păun and Sh. Yu. World Scientific, Singapore (2001) 59-68. | MR 1914749

[6] J. Dassow, Subregularly controlled derivations: restrictions by syntactic parameters. Where Math., Comput. Sci., Linguistics and Biology Meet. Kluwer Academic Publishers (2001) 51-61. | MR 1890680 | Zbl 1007.68090

[7] J. Dassow, Contextual grammars with subregular choice. Fundamenta Informaticae 64 (2005) 109-118. | MR 2347547 | Zbl 1102.68041

[8] J. Dassow, Grammars with commutative, circular, and locally testable conditions. Automata, Formal Languages, and Related Topics - Dedicated to Ferenc Gécseg on the occasion of his 70th birthday. University of Szeged (2009) 27-37. | MR 2553622 | Zbl 1183.68324

[9] J. Dassow and U. Fest, On regulated L systems. Rostock. Math. Kolloq. 25 (1984) 99-118. | MR 763680 | Zbl 0565.68067

[10] J. Dassow and H. Hornig, Conditional grammars with subregular conditions, in Proc. Internat. Conf. Words, Languages and Combinatorics II. World Scientific, Singapore (1994) 71-86. | MR 1351280 | Zbl 0875.68610

[11] J. Dassow, F. Manea and B. Truthe, Networks of evolutionary processors with subregular filters, in Languages and Automata Theory and Applications. Vol. 6638 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (2011) 262-273. | Zbl 1230.68125

[12] J. Dassow, F. Manea and B. Truthe, On Contextual Grammars with Subregular Selection Languages, in Descriptional Complexity of Formal Systems. Vol. 6808 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (2011) 135-146. | MR 2910372

[13] J. Dassow and Gh. Păun. Regulated Rrewriting in Formal Language Theory. Springer-Verlag, Berlin (1989). | MR 1067543 | Zbl 0697.68067

[14] J. Dassow and St. Rudolf, Conditional Lindenmayer systems with subregular conditions: the extended case (Submitted).

[15] J. Dassow, R. Stiebe and B. Truthe, Two collapsing hierarchies of subregularly tree controlled languages. Theoretical Comput. Sci. 410 (2009) 3261-3271. | MR 2546881 | Zbl 1176.68102

[16] J. Dassow, R. Stiebe and B. Truthe, Generative capacity of subregularly tree controlled grammars. Int. J. Foundations Comput. Sci. 21 (2010) 723-740. | MR 2728321 | Zbl 1207.68173

[17] J. Dassow and B. Truthe, On networks of evolutionary processors with filters accepted by two-state-automata. Fundamenta Informaticae 113 (2011) 1-14. | MR 2918604 | Zbl 1263.68098

[18] I. Fris, Grammars with partial ordering. Information and Control 12 (1968) 415-425. | MR 243952 | Zbl 0172.30002

[19] S. Ginsburg and E.H. Spanier, Control sets on grammars. Math. Syst. Theory 2 (1968) 159-177. | MR 235936 | Zbl 0157.33604

[20] F. Gécseg and I. Peak, Algebraic Theory of Automata. Academiai kiado, Budapest (1972). | MR 332374 | Zbl 0246.94029

[21] A. Gill and L.T. Kou, Multiple-entry finite automata. J. Comput. Syst. Sci. 9 (1974) 1-19. | MR 351666 | Zbl 0285.94030

[22] Y.-S. Han, K. Salomaa and D. Wood, Nondeterministic state complexity of basic operations for prefix-suffix-free regular languages. Fundamenta Informaticae 90 (2009) 93-106. | MR 2494605 | Zbl 1161.68534

[23] I.M. Havel, The theory of regular events II. Kybernetika 5 (1969) 520-544. | MR 256787 | Zbl 0184.28703

[24] S. Istrail, Gramatici contextuale cu selectiva regulata. Stud. Cerc. Mat. 30 (1978) 287-294. | MR 500803

[25] F. Manea and B. Truthe, Accepting Networks of Evolutionary Processors with Subregular Filters, in Automata and Formal Languages - 13th International Conference AFL 2011. College of Nyíregyháza (2011) 300-314. | Zbl 1230.68125

[26] F. Manea and B. Truthe, On internal contextual grammars with subregular selection languages, in Descriptional Complexity of Formal Systems. Vol. 7386 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (2012) 222-235. | MR 2993347

[27] S. Marcus, Contextual grammars. Revue Roum. Math. Pures Appl. 14 (1969) 1525-1534. | MR 262026 | Zbl 0193.32401

[28] C. Martín-Vide and V. Mitrana, Networks of Evolutionary Processors: Results and Perspectives, in Molecular Computational Models: Unconventional Approaches (2005) 78-114. | Zbl 1060.68046

[29] R. Mcnaughton and S. Papert, Counter-Free Languages. M.I.T. Press (1971). | MR 371538

[30] M. Perles, M.M. Rabin and E. Shamir, The theory of definite automata. IEEE Trans. Electronic Comput. 12 (1963) 233-243. | MR 153518 | Zbl 0158.01002

[31] G. Păun, Marcus Contextual Grammars. Kluwer Publ. House, Doordrecht (1998). | Zbl 0965.68037

[32] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press, New York (1980). | MR 561711 | Zbl 0508.68031

[33] G. Rozenberg and A. Salomaa, Handbook of Formal Languages. Springer-Verlag, Berlin (1997). | Zbl 0866.68057

[34] G. Rozenberg and S.H. Von Solms, Priorities on context conditions in rewriting systems. Inform. Sci. 14 (1978) 15-51. | MR 538667 | Zbl 0416.68066

[35] A. Salomaa, Formal Languages. Academic Press, New York (1973). | MR 438755 | Zbl 0686.68003

[36] H.J. Shyr, Free Monoids and Languages. Hon Min Book Co., Taichung, Taiwan (1991). | MR 1090325 | Zbl 0746.20050

[37] H.J. Shyr and G. Thierrin, Ordered automata and associated languages. Tamkang J. Math. 5 (1974) 9-20. | MR 366563 | Zbl 0302.68069

[38] P.H. Starke, Abstrakte Automaten. Deutscher Verlag der Wissenschaften, Berlin (1969). | MR 276016 | Zbl 0182.02102

[39] B. Wiedemann, Vergleich der Leistungsfähigkeit endlicher determinierter Automaten. Diplomarbeit, Universität Rostock (1978).