The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231-245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO-Theor. Inf. Appl. 40 (2006) 551-557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju's construction. So we prove that ωPCP is undecidable for domain alphabets of size 8.
Keywords: ωPCP, semi-Thue system, undecidable, theory of computation
@article{ITA_2012__46_3_451_0,
author = {Dong, Jing and Liu, Qinghui},
title = {Undecidability of infinite post correspondence problem for instances of size 8},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {451--457},
year = {2012},
publisher = {EDP Sciences},
volume = {46},
number = {3},
doi = {10.1051/ita/2012015},
mrnumber = {2981678},
zbl = {1257.03069},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2012015/}
}
TY - JOUR AU - Dong, Jing AU - Liu, Qinghui TI - Undecidability of infinite post correspondence problem for instances of size 8 JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 451 EP - 457 VL - 46 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2012015/ DO - 10.1051/ita/2012015 LA - en ID - ITA_2012__46_3_451_0 ER -
%0 Journal Article %A Dong, Jing %A Liu, Qinghui %T Undecidability of infinite post correspondence problem for instances of size 8 %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 451-457 %V 46 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2012015/ %R 10.1051/ita/2012015 %G en %F ITA_2012__46_3_451_0
Dong, Jing; Liu, Qinghui. Undecidability of infinite post correspondence problem for instances of size 8. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 3, pp. 451-457. doi: 10.1051/ita/2012015
[1] and , Undecidable problems for probabilistic automata of fixed dimension. Theor. Comput. Syst. 36 (2003) 231-245. | Zbl | MR
[2] , and , The (generalized) Post Correspondence Problem with lists consisting of two words is decidable. Theoret. Comput. Sci. 21 (1982) 119-144. | Zbl | MR
[3] and , Undecibability of infinite Post Correspondence Problem for instances of size 9. RAIRO-Theor. Inf. Appl. 40 (2006) 551-557. | Zbl | MR | Numdam
[4] , and , Binary (generalized) Post Correspondence Problem. Theoret. Comput. Sci. 276 (2002) 183-204. | Zbl | MR
[5] and , Decision problems for semi-Thue systems with a few rules. Theoret. Comput. Sci. 330 (2005) 145-169. | Zbl | MR
[6] , A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc. 52 (1946) 264-268. | Zbl | MR
[7] , Reversible machines and Posts Correspondence Problem for biprefix morphisms. J. Inform. Process. Cybernet.EIK 21 (1985) 579-595. | Zbl | MR
Cité par Sources :





