We prove that the subsets of that are S-recognizable for all abstract numeration systems S are exactly the 1-recognizable sets. This generalizes a result of Lecomte and Rigo in the one-dimensional setting.
Keywords: finite automata, numeration systems, recognizable sets of integers, multi-dimensional setting
@article{ITA_2012__46_1_51_0,
author = {Charlier, \'Emilie and Lacroix, Anne and Rampersad, Narad},
title = {Multi-dimensional sets recognizable in all abstract numeration systems},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {51--65},
year = {2012},
publisher = {EDP Sciences},
volume = {46},
number = {1},
doi = {10.1051/ita/2011112},
mrnumber = {2904960},
zbl = {1254.68132},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2011112/}
}
TY - JOUR AU - Charlier, Émilie AU - Lacroix, Anne AU - Rampersad, Narad TI - Multi-dimensional sets recognizable in all abstract numeration systems JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 51 EP - 65 VL - 46 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2011112/ DO - 10.1051/ita/2011112 LA - en ID - ITA_2012__46_1_51_0 ER -
%0 Journal Article %A Charlier, Émilie %A Lacroix, Anne %A Rampersad, Narad %T Multi-dimensional sets recognizable in all abstract numeration systems %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 51-65 %V 46 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2011112/ %R 10.1051/ita/2011112 %G en %F ITA_2012__46_1_51_0
Charlier, Émilie; Lacroix, Anne; Rampersad, Narad. Multi-dimensional sets recognizable in all abstract numeration systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 51-65. doi: 10.1051/ita/2011112
[1] and , Radix enumeration of rational languages. RAIRO-Theor. Inf. Appl. 44 (2010) 19-36. | Zbl | MR | Numdam
[2] , , and , On the cost and complexity of the successor function, in Proceedings of WORDS 2007. P. Arnoux, N. Bédaride and J. Cassaigne Eds., CIRM, Luminy, Marseille (2007).
[3] , , and , Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. 1 (1994) 191-238. | Zbl | MR
[4] , and , Multidimensional generalized automatic sequences and shape-symmetric morphic words. Discrete Math. 310 (2010) 1238-1252. | Zbl | MR
[5] , On the base-dependence of set of numbers recognizable by finite automata. Math. Syst. Theory 3 (1969) 186-192. | Zbl | MR
[6] , Automata, languages, and machines A, Pure and Applied Mathematics 58. Academic Press, New York (1974). | Zbl | MR
[7] , and , Sets recognised by n-tape automata. J. Algebra 13 (1969) 447-464. | Zbl | MR
[8] and , Synchronized rational relations of finite and infinite words. Theoret. Comput. Sci. 108 (1993) 45-82. | Zbl | MR
[9] and , Number representation and finite automata, in Combinatorics, Automata, and Number Theory, Encyclopedia of Mathematics and its Applications 135. V. Berthé and M. Rigo Eds., Cambridge (2010). | Zbl | MR
[10] and , Semigroups, Presburger formulas and languages. Pac. J. Math. 16 (1966) 285-296. | Zbl | MR
[11] and , Numeration systems on a regular language. Theor. Comput. Syst. 34 (2001) 27-44. | Zbl | MR
[12] and , Abstract numeration systems, in Combinatorics, Automata, and Number Theory, Encyclopedia of Mathematics and its Applications 135. V. Berthé and M. Rigo Eds., Cambridge (2010). | Zbl | MR
[13] , The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30. Oxford (2005). | Zbl
[14] and , More on generalized automatic sequences. J. Autom. Lang. Comb. 7 (2002) 351-376. | Zbl | MR
[15] , Automatic Structures. Ph.D. thesis, University of Auckland, New Zealand (2004). | Zbl
[16] , The Presburger nature of predicates that are regular in two number systems. Sibirsk. Math. Ž. 18 (1977) 403-418, 479 (in Russian). English translation in Sib. J. Math. 18 (1977) 289-300. | Zbl | MR
Cité par Sources :





