The fixed point submonoid of an endomorphism of a free product of a free monoid and cyclic groups is proved to be rational using automata-theoretic techniques. Maslakova's result on the computability of the fixed point subgroup of a free group automorphism is generalized to endomorphisms of free products of a free monoid and a free group which are automorphisms of the maximal subgroup.
Keywords: endomorphisms, fixed points, free products
@article{ITA_2012__46_1_165_0,
author = {Silva, Pedro V.},
title = {Fixed points of endomorphisms of certain free products},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {165--179},
year = {2012},
publisher = {EDP Sciences},
volume = {46},
number = {1},
doi = {10.1051/ita/2011125},
mrnumber = {2904968},
zbl = {1266.20069},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2011125/}
}
TY - JOUR AU - Silva, Pedro V. TI - Fixed points of endomorphisms of certain free products JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 165 EP - 179 VL - 46 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2011125/ DO - 10.1051/ita/2011125 LA - en ID - ITA_2012__46_1_165_0 ER -
%0 Journal Article %A Silva, Pedro V. %T Fixed points of endomorphisms of certain free products %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 165-179 %V 46 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2011125/ %R 10.1051/ita/2011125 %G en %F ITA_2012__46_1_165_0
Silva, Pedro V. Fixed points of endomorphisms of certain free products. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 165-179. doi: 10.1051/ita/2011125
[1] , Descendants of regular language in a class of rewriting systems: algorithm and complexity of an automata construction, in Proc. of RTA 87. Lect. Notes Comput. Sci. 256 (1987) 121-132. | Zbl | MR
[2] , Transductions and Context-free Languages. Teubner, Stuttgart (1979). | Zbl | MR
[3] and , Train tracks and automorphisms of free groups. Ann. Math. 135 (1992) 1-51. | Zbl | MR
[4] , , and , The conjugacy problem is solvable in free-by-cyclic groups. Bull. Lond. Math. Soc. 38 (2006) 787-794. | Zbl | MR
[5] and , String-Rewriting Systems. Springer-Verlag, New York (1993). | Zbl | MR
[6] and , Infinite words and confluent rewriting systems: endomorphism extensions. Int. J. Algebra Comput. 19 (2009) 443-490. | Zbl | MR
[7] and , Infinite periodic points of endomorphisms over special confluent rewriting systems. Ann. Inst. Fourier 59 (2009) 769-810. | Zbl | MR | Numdam
[8] and , Efficient representatives for automorphisms of free products. Mich. Math. J. 41 (1994) 443-464. | Zbl | MR
[9] , Automorphisms of free groups have finitely generated fixed point sets. J. Algebra 111 (1987) 453-456. | Zbl | MR
[10] , Fixed points of automorphisms of free groups. Adv. Math. 64 (1987) 51-85. | Zbl | MR
[11] and , Monomorphisms of finitely generated free groups have finitely generated equalizers. Invent. Math. 82 (1985) 283-289. | Zbl | MR
[12] and , Fixed subgroups of homomorphisms of free groups. Bull. Lond. Math. Soc. 18 (1986) 468-470. | Zbl | MR
[13] and , Characterization of finite and one-sided infinite fixed points of morphisms on free monoids. Technical Report CS-99-17 (1999).
[14] , Fixed languages and the adult languages of 0L schemes. Int. J. Comput. Math. 10 (1981) 103-107. | Zbl | MR
[15] , Semigroups. Fizmatgiz. Moscow (1960). English translation by Am. Math. Soc. (1974). | Zbl
[16] , The fixed point group of a free group automorphism. Algebra i Logika 42 (2003) 422-472. English translation in Algebra Logic 42 (2003) 237-265. | Zbl | MR
[17] and , On directly infinite rings. Acta Math. Hung. 85 (1999) 153-165. | Zbl | MR
[18] , Éléments de Théorie des Automates. Vuibert, Paris (2003). | Zbl
[19] , Rational subsets of partially reversible monoids. Theoret. Comput. Sci. 409 (2008) 537-548. | Zbl | MR
[20] , Fixed points of endomorphisms over special confluent rewriting systems. Monatsh. Math. 161 (2010) 417-447. | Zbl | MR
[21] , Fixed subgroups of endomorphisms of free products. J. Algebra 315 (2007) 274-278. | Zbl | MR
[22] , Fixed subgroups of free groups: a survey. Contemp. Math. 296 (2002) 231-255. | Zbl | MR
Cité par Sources :






