We show that there are three types of infinite words over the two-letter alphabet {0,1} that avoid the pattern AABBCABBA. These types, P, E0, and E1, differ by the factor complexity and the asymptotic frequency of the letter 0. Type P has polynomial factor complexity and letter frequency . Type E0 has exponential factor complexity and the frequency of the letter 0 is at least 0.45622 and at most 0.48684. Type E1 is obtained from type E0 by exchanging 0 and 1.
Keywords: combinatorics on words, letter frequency, factor complexity
@article{ITA_2010__44_1_151_0,
author = {Ochem, Pascal},
title = {Binary words avoiding the pattern {AABBCABBA}},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {151--158},
year = {2010},
publisher = {EDP Sciences},
volume = {44},
number = {1},
doi = {10.1051/ita/2010010},
mrnumber = {2604940},
zbl = {1184.68377},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2010010/}
}
TY - JOUR AU - Ochem, Pascal TI - Binary words avoiding the pattern AABBCABBA JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 SP - 151 EP - 158 VL - 44 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2010010/ DO - 10.1051/ita/2010010 LA - en ID - ITA_2010__44_1_151_0 ER -
%0 Journal Article %A Ochem, Pascal %T Binary words avoiding the pattern AABBCABBA %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2010 %P 151-158 %V 44 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2010010/ %R 10.1051/ita/2010010 %G en %F ITA_2010__44_1_151_0
Ochem, Pascal. Binary words avoiding the pattern AABBCABBA. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 151-158. doi: 10.1051/ita/2010010
[1] , and , Growth problems for avoidable words. Theoret. Comput. Sci. 69 (1989) 319-345. | Zbl
[2] , Axel Thue's papers on repetitions in words: a translation. Publications du LaCIM, Département de mathématiques et d'informatique 95, Université du Québec à Montréal (1995). http://www-igm.univ-mlv.fr/ berstel/Articles/1994ThueTranslation.pdf
[3] , Growth of repetition-free words - a review. Theoret. Comput. Sci. 340 (2005) 280-290. | Zbl
[4] , Motifs évitables et régularité dans les mots. Thèse de Doctorat, Université Paris VI (1994).
[5] , Avoidable formulas in combinatorics on words. Ph.D. thesis, University of California, Los Angeles (2001).
[6] , Efficient lower bounds on the number of repetition-free words. J. Integer Sequences 10 (2007) Article 07.3.2. | Zbl
[7] , A generator of morphisms for infinite words. RAIRO-Theor. Inf. Appl. 40 (2006) 427-441. | Zbl | Numdam
[8] , Letter frequency in infinite repetition-free words. Theoret. Comput. Sci. 380 (2007) 388-392. | Zbl
[9] and , Upper bound on the number of ternary square-free words, Proceedings of the Workshop on Words and Automata (WOWA'06) (St Petersburg, June 2006). http://www.lri.fr/ ochem/morphisms/wowa.ps
[10] , Combinatorial complexity of regular languages. CSR 2008. Lect. Notes Comput. Sci. 5010 (2008) 289-301. | Zbl
[11] , Blocking sets of terms. Math. USSR Sbornik 47 (1984) 353-364. English translation. | Zbl
Cité par Sources :






