We present an algorithm which produces, in some cases, infinite words avoiding both large fractional repetitions and a given set of finite words. We use this method to show that all the ternary patterns whose avoidability index was left open in Cassaigne’s thesis are 2-avoidable. We also prove that there exist exponentially many -free ternary words and -free 4-ary words. Finally we give small morphisms for binary words containing only the squares , and and for binary words avoiding large squares and fractional repetitions.
@article{ITA_2006__40_3_427_0,
author = {Ochem, Pascal},
title = {A generator of morphisms for infinite words},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {427--441},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {3},
doi = {10.1051/ita:2006020},
mrnumber = {2269202},
zbl = {1110.68122},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2006020/}
}
TY - JOUR AU - Ochem, Pascal TI - A generator of morphisms for infinite words JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 427 EP - 441 VL - 40 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2006020/ DO - 10.1051/ita:2006020 LA - en ID - ITA_2006__40_3_427_0 ER -
%0 Journal Article %A Ochem, Pascal %T A generator of morphisms for infinite words %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 427-441 %V 40 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2006020/ %R 10.1051/ita:2006020 %G en %F ITA_2006__40_3_427_0
Ochem, Pascal. A generator of morphisms for infinite words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 427-441. doi: 10.1051/ita:2006020
[1] , and, Growth Problems for Avoidable Words. Theoret. Comput. Sci. 69 (1989) 319-345. | Zbl
[2] ,,, Avoidable Patterns in Strings of Symbols. Pacific J. Math. 85 (1979) 261-294. | Zbl
[3] , Axel Thue's Papers on Repetitions in Words: a Translation. Number 20 in Publications du Laboratoire de Combinatoire et d'Informatique Mathématique. Université du Québec à Montréal (February 1995).
[4] , Motifs évitables et régularité dans les mots, Thèse de Doctorat, Université Paris VI (Juillet 1994).
[5] . Avoidable formulas in combinatorics on words, Ph.D. Thesis, University of California, Los Angeles (2001).
[6] , Open problems in pattern avoidance. Amer. Math. Monthly 100 (1993) 790-793. | Zbl
[7] , Sur un théorème de Thue. J. Combin. Theory. Ser. A 13 (1972) 90-99. | Zbl
[8] and, How many squares must a binary sequence contain? Elect. J. Combin. 2 (1995) #R2. | Zbl | MR
[9] , and, A generalization of Repetition Threshold. Theoret. Comput. Sci. 345 (2005) 359-369. | Zbl | MR
[10] and, Polynomial versus exponential growth in repetition-free binary words. J. Combin. Theory Ser. A 105 (2004) 335-347. | Zbl
[11] , Algebraic Combinatorics on Words. Cambridge Univ. Press (2002). | Zbl | MR
[12] , Proof of Dejean's conjecture for alphabets with 5,6,7,8,9,10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187-205. | Zbl
[13] , A propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Disc. Appl. Math. 7 (1984) 297-311. | Zbl
[14] , and, Avoiding large squares in infinite binary words. Theoret. Comput. Sci. 339 (2005) 19-34. | Zbl
[15] , Simultaneous avoidance of large squares and fractional powers in infinite binary words. Internat. J. Found. Comput. Sci. 15 (2004) 317-327. | Zbl
[16] , Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906), 1-22. Reprinted in Selected Mathematical Papers of Axel Thue, edited by T. Nagell, Universitetsforlaget, Oslo (1977) 139-158. | JFM
[17] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1-67. Reprinted in Selected Mathematical Papers of Axel Thue, edited by T. Nagell, Universitetsforlaget, Oslo (1977) 413-478. | JFM
[18] , Blocking sets of terms. Math. USSR Sbornik 47 (1984) 353-364. English translation. | Zbl
Cité par Sources :






