Schützenberger-like products in non-free monoids
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 29 (1995) no. 3, pp. 209-226.
@article{ITA_1995__29_3_209_0,
     author = {Redziejowski, Roman R.},
     title = {Sch\"utzenberger-like products in non-free monoids},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {209--226},
     publisher = {EDP-Sciences},
     volume = {29},
     number = {3},
     year = {1995},
     mrnumber = {1347594},
     zbl = {0833.68071},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1995__29_3_209_0/}
}
TY  - JOUR
AU  - Redziejowski, Roman R.
TI  - Schützenberger-like products in non-free monoids
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1995
SP  - 209
EP  - 226
VL  - 29
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1995__29_3_209_0/
LA  - en
ID  - ITA_1995__29_3_209_0
ER  - 
%0 Journal Article
%A Redziejowski, Roman R.
%T Schützenberger-like products in non-free monoids
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1995
%P 209-226
%V 29
%N 3
%I EDP-Sciences
%U http://www.numdam.org/item/ITA_1995__29_3_209_0/
%G en
%F ITA_1995__29_3_209_0
Redziejowski, Roman R. Schützenberger-like products in non-free monoids. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 29 (1995) no. 3, pp. 209-226. http://www.numdam.org/item/ITA_1995__29_3_209_0/

1. R. Cori and D. Perrin, Automates et commutations partielles, Informatique Théorique et Applications, 1985, 19, pp.21-32. | EuDML | Numdam | MR | Zbl

2. V. Diekert, Combinatorics on Traces, Lecture Notes in Comp. Sci., 1987, 454, Springer-Verlag. | MR | Zbl

3. S. Eilenberg, Automata, Languages and Machines B, Academic Press, 1976. | Zbl

4. P. Gastin, A. Petit and W. Zielonka, An extension of Kleene's and Ochmanski's theorems to infinite traces, Theoret. Comp. Sci., 1994, 125, pp. 167-204. | MR | Zbl

5. K. Kuratowski and A. Mostowski, Set Theory, North Holland, 1976. | MR | Zbl

6. J. D. Jr. Mcknight, Kleene quotient theorems, Pacific J. of Math., 1964, 14, pp. 1343-1352. | MR | Zbl

7. J. D. Jr. Mcknight and A. J. Storey, Equidivisible semigroups, J. Algebra, 1969, 12, pp.24-48. | MR | Zbl

8. G. Lallement, Semigroups and Combinatorial Applications, John Wiley and Sons, 1979. | MR | Zbl

9. F. W. Levi, On semigroups, Bull. Calcutta Math. Soc., 1944, 36, pp. 141-146. | MR | Zbl

10. L. Petrone and M. P. Schützenberger, Sur un problème de McNaughton, Report, CETTS-EURATOM, 1963.

11. J. E. Pin, Hiérarchies de concaténation, RAIRO Informatique Théorique, 1984, 18, pp. 23-46. | Numdam | MR | Zbl

12. J. E. Pin, Varieties of Formal Languages, North Oxford Academic, 1986. | MR | Zbl

13. C. Reutenauer, Sur les variétés de langages et de monoïdes. In Theoretical Computer Science 4th GI Conference (Ed. K. WEIHRAUCH), Lecture Notes in Comp. Sci. 67, Springer-Verlag, 1979, pp. 260-265. | MR | Zbl

14. M. P. Schützenberger, On finite monoids having only trivial semigroups, Information and Control, 1965, 8, pp. 190-194. | MR | Zbl

15. M. P. Schützenberger, Sur certaines variétés de monoïdes finis, In Automata Theory, (Ed. E. R. CAIANIELLO), Academic Press, 1966, pp. 314-319. | MR | Zbl

16. I. Simon, The product of rational languages. In Automata, Languages and Programming, (Ed. A. LINGAS, R. KARLSSON and S. CARLSSON), Lecture Notes in Comp. Sci. 700, Springer-Verlag, 1993, pp. 430-444. | MR

17. H. Straubing, A generalization of the Schützenberger product of finite monoids, Theoret. Comp. Sci., 1981, 13, pp. 137-150. | MR | Zbl

18. P. Weil, Concatenation product: a survey. In Formal Properties of Finite Automata and Applications, (Ed. J. E. PIN), Lecture Notes in Comp. Sci. 386, Springer-Verlag, 1989, pp. 120-137. | MR

19. P. Weil, Product of Languages with counter, Theoret. Comp. Sci., 1990, 76, pp. 251-260. | MR | Zbl