@article{ITA_1986__20_1_43_0,
author = {Pansiot, Jean-Jacques},
title = {Decidability of periodicity for infinite words},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {43--46},
year = {1986},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {20},
number = {1},
mrnumber = {849964},
zbl = {0617.68063},
language = {en},
url = {https://www.numdam.org/item/ITA_1986__20_1_43_0/}
}
TY - JOUR AU - Pansiot, Jean-Jacques TI - Decidability of periodicity for infinite words JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1986 SP - 43 EP - 46 VL - 20 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/ITA_1986__20_1_43_0/ LA - en ID - ITA_1986__20_1_43_0 ER -
%0 Journal Article %A Pansiot, Jean-Jacques %T Decidability of periodicity for infinite words %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1986 %P 43-46 %V 20 %N 1 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/ITA_1986__20_1_43_0/ %G en %F ITA_1986__20_1_43_0
Pansiot, Jean-Jacques. Decidability of periodicity for infinite words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 1, pp. 43-46. https://www.numdam.org/item/ITA_1986__20_1_43_0/
1. and , The ω-Sequence Equivalence Problem for DOL Systems is Decidable, J.A.C.M., Vol. 31, 1984, pp. 282-298. | Zbl | MR
2. and , On Infinite Words Obtained by Iterating Morphisms, Theoretical Computer Science, Vol. 19, 1982, pp. 29-38. | Zbl | MR
3. , Adherence Equivalence is Decidable for DOL Languages, Proceedings of the Symposium on Theoretical Aspects of Computer Science, Paris, April 1984. Lecture Notes in Computer Science No. 166, pp. 241-249, Springer-Verlag, Berlin, 1984. | Zbl | MR
4. , Bornes inférieures sur la complexité des facteurs des mots infinis engendrés par morphismes itérés, Ibid., pp. 230-240. | Zbl | MR
5. and , The Mathematical Theory of L Systems, Academic Press, NewYork, 1980. | Zbl | MR





