@article{ITA_1982__16_4_331_0,
author = {Lescanne, Pierre},
title = {Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems},
journal = {RAIRO. Informatique th\'eorique},
pages = {331--347},
year = {1982},
publisher = {EDP Sciences},
volume = {16},
number = {4},
mrnumber = {707635},
zbl = {0518.68025},
language = {en},
url = {https://www.numdam.org/item/ITA_1982__16_4_331_0/}
}
TY - JOUR AU - Lescanne, Pierre TI - Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems JO - RAIRO. Informatique théorique PY - 1982 SP - 331 EP - 347 VL - 16 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_1982__16_4_331_0/ LA - en ID - ITA_1982__16_4_331_0 ER -
%0 Journal Article %A Lescanne, Pierre %T Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems %J RAIRO. Informatique théorique %D 1982 %P 331-347 %V 16 %N 4 %I EDP Sciences %U https://www.numdam.org/item/ITA_1982__16_4_331_0/ %G en %F ITA_1982__16_4_331_0
Lescanne, Pierre. Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems. RAIRO. Informatique théorique, Tome 16 (1982) no. 4, pp. 331-347. https://www.numdam.org/item/ITA_1982__16_4_331_0/
1. , Ordering for Term Rewriting Systems, Proc. 20th Symposium on Foundations of Computer Science, 1979, pp. 123-131, also in Theoritical Computer Science, Vol. 17, 1982, pp. 279-301. | Zbl | MR
2. , A note on Simplification Orderings, Inform. Proc. Ltrs., Vol. 9, 1979, pp. 212-215. | Zbl | MR
3. , and , Description and Analysis of an Efficient Priority Queues Representation, Proc. 19th Symposium of Foundations of Computer Science, 1978, pp. 1-7. | MR
4. , A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm, Rapport INRIA 25, 1980. | MR
5. and , Proof by Induction in Equational Theories with Constructors, Proc. 21th Symposium on Foundations of Computer Science, 1980.
6. and , Equations and Rewrite Rules: a Survey, in Formal Languages perspectives and Open Problems, R. BOOK, Ed., Academic Press, 1980.
7. , The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Addison Wesley, Reading, Mass., 1968. | MR
8. and , Simple Word Problems in Universal Algebra, in Computational Problems in Abstract Algebra, J. LEECH, Ed., Pergamon Press, 1970, pp. 263-297. | Zbl | MR
9. , Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi's Conjecture, Trans. Amer. Math. Soc., Vol. 95, 1960, pp. 210-225. | Zbl | MR
10. , Two Implementations of the Recursive Path Ordering on Monadic Terms, 19th Annual Allerton Conf. on Communication, Control, and Computing, Allerton House, Monticello, Illinois, 1981.
11. , Decomposition Ordering as a Tool to prove the Termination of Rewriting Systems, 7th IJCAI, Vancouver, Canada, 1981, pp. 548-550.
12. and , A Well-Founded Recursively Defined Ordering on First Order Terms, Centre de Recherche en Informatique de Nancy, France, CRIN 80-R-005.
13. , On Proving Inductive Properties of Abstract Data Types, Proc. 7th ACM Symposium on Principles of Programming Languages, 1980.
14. , On Well-Quasi-Ordering on Finite Trees, Proc. Cambridge Philos. Soc., Vol. 60, 1964, pp. 833-835. | Zbl | MR
15. , Well-Founded Orderings for Proving Termination of Systems of Rewrite Rules, Dept of Computer Science Report 78-932, U. of Illinois at Urbana-Champaign, July 1978.
16. , A Recursively Defined Ordering for Proving Termination of Term Rewriting Systems, Dept of Computer Science Report 78-943, U. of Illinois at Urbana-Champaign, Sept. 1978.
17. , Les ordres de décomposition: un outil incrémental pour prouver la terminaison finie de systèmes de réécriture de termes, Thèse, Université de Nancy, 1981.
18. and , On Multiset Orderings, in Inform. Proc. Ltrs., Vol. 15, 1982, pp. 57-63. | Zbl | MR
19. , and , Recursive Decomposition Ordering, IFIP Conf. on Formal Description of Programming Concepts, Garmisch-Partenkirchen, Germany, 1982. | Zbl | MR






