Combinatorics/Algebra
Proof of the Kontsevich non-commutative cluster positivity conjecture
Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 929-932.

We extend the Lee–Schiffler Dyck path model to give a proof of the Kontsevich non-commutative cluster positivity conjecture with unequal parameters.

Nous étendons le modèle des chemins de Dyck, introduit par Lee–Schiffler, pour donner une preuve de la conjecture de positivité de Kontsevich pour les graines non commutatives à paramètres inégaux.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.10.034
Rupel, Dylan 1

1 Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
@article{CRMATH_2012__350_21-22_929_0,
     author = {Rupel, Dylan},
     title = {Proof of the {Kontsevich} non-commutative cluster positivity conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {929--932},
     publisher = {Elsevier},
     volume = {350},
     number = {21-22},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.034},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2012.10.034/}
}
TY  - JOUR
AU  - Rupel, Dylan
TI  - Proof of the Kontsevich non-commutative cluster positivity conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 929
EP  - 932
VL  - 350
IS  - 21-22
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2012.10.034/
DO  - 10.1016/j.crma.2012.10.034
LA  - en
ID  - CRMATH_2012__350_21-22_929_0
ER  - 
%0 Journal Article
%A Rupel, Dylan
%T Proof of the Kontsevich non-commutative cluster positivity conjecture
%J Comptes Rendus. Mathématique
%D 2012
%P 929-932
%V 350
%N 21-22
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2012.10.034/
%R 10.1016/j.crma.2012.10.034
%G en
%F CRMATH_2012__350_21-22_929_0
Rupel, Dylan. Proof of the Kontsevich non-commutative cluster positivity conjecture. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 929-932. doi : 10.1016/j.crma.2012.10.034. http://www.numdam.org/articles/10.1016/j.crma.2012.10.034/

[1] Berenstein, A.; Retakh, V. A short proof of Kontsevich cluster conjecture, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 3–4, pp. 119-122

[2] Berenstein, A.; Zelevinsky, A. Quantum cluster algebras, Adv. Math., Volume 195 (2005) no. 2, pp. 405-455

[3] Di Francesco, P.; Kedem, R. Discrete non-commutative integrability: Proof of a conjecture of M. Kontsevich, Int. Math. Res. Not., Volume 2010 (2010) no. 21, pp. 4042-4063 | DOI

[4] Di Francesco, P.; Kedem, R. Non-commutative integrability, paths and quasi-determinants, Adv. Math., Volume 228 (2011) no. 1, pp. 97-152

[5] Fomin, S.; Zelevinsky, A. Cluster algebras I: Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529

[6] Lee, K.; Schiffler, R. Proof of a positivity conjecture of M. Kontsevich on non-commutative cluster variables, 2011 (preprint) | arXiv

[7] Usnich, A. Non-commutative Laurent phenomenon for two variables, 2010 (preprint) | arXiv

Cited by Sources: