We present an efficient reduced-basis discretization procedure for partial differential equations with nonaffine parameter dependence. The method replaces nonaffine coefficient functions with a collateral reduced-basis expansion which then permits an (effectively affine) offline–online computational decomposition. The essential components of the approach are (i) a good collateral reduced-basis approximation space, (ii) a stable and inexpensive interpolation procedure, and (iii) an effective a posteriori estimator to quantify the newly introduced errors. Theoretical and numerical results respectively anticipate and confirm the good behavior of the technique.
Nous présentons dans cette Note une méthode rapide de base réduite pour la résolution d'équations aux dérivées partielles ayant une dépendance non affine en ses paramètres. L'approche propose de remplacer le calcul des fonctionelles non affines par un développement en base réduite annexe qui conduit à une évaluation en ligne effectivement affine. Les points essentiels de cette approche sont (i) un bon système de base réduite annexe, (ii) une méthode stable et peu coûteuse d'interpolation dans cette base, et (iii) un estimateur a posteriori pertinent pour quantifier les nouvelles erreurs introduites. Des résultats théoriques et numériques viennent anticiper puis confirmer le bon comportement de cette technique.
Accepted:
Published online:
@article{CRMATH_2004__339_9_667_0, author = {Barrault, Maxime and Maday, Yvon and Nguyen, Ngoc Cuong and Patera, Anthony T.}, title = {An {\textquoteleft}empirical interpolation{\textquoteright} method: application to efficient reduced-basis discretization of partial differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {667--672}, publisher = {Elsevier}, volume = {339}, number = {9}, year = {2004}, doi = {10.1016/j.crma.2004.08.006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.08.006/} }
TY - JOUR AU - Barrault, Maxime AU - Maday, Yvon AU - Nguyen, Ngoc Cuong AU - Patera, Anthony T. TI - An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations JO - Comptes Rendus. Mathématique PY - 2004 SP - 667 EP - 672 VL - 339 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.08.006/ DO - 10.1016/j.crma.2004.08.006 LA - en ID - CRMATH_2004__339_9_667_0 ER -
%0 Journal Article %A Barrault, Maxime %A Maday, Yvon %A Nguyen, Ngoc Cuong %A Patera, Anthony T. %T An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations %J Comptes Rendus. Mathématique %D 2004 %P 667-672 %V 339 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2004.08.006/ %R 10.1016/j.crma.2004.08.006 %G en %F CRMATH_2004__339_9_667_0
Barrault, Maxime; Maday, Yvon; Nguyen, Ngoc Cuong; Patera, Anthony T. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 667-672. doi : 10.1016/j.crma.2004.08.006. http://www.numdam.org/articles/10.1016/j.crma.2004.08.006/
[1] Automatic choice of global shape functions in structural analysis, AIAA J., Volume 16 (1978), pp. 525-528
[2] On the error behavior of the reduced basis technique for nonlinear finite element approximations, Z. Angew. Math. Mech., Volume 63 (1983), pp. 21-28
[3] Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000) no. 2, pp. 153-158
[4] Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002) no. 3, pp. 289-294
[5] Reduced basis technique for nonlinear analysis of structures, AIAA J., Volume 18 (1980) no. 4, pp. 455-462
[6] Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Engrg., Volume 124 (2002) no. 1, pp. 70-80
[7] Numer. Math., Texts Appl. Math., vol. 37, Springer, New York, 1991
[8] A Posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, June, 2003 (AIAA Paper 2003-3847)
Cited by Sources: