An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints
ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 540-560

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator and provide a bulk criterion for mesh refinement that also takes into account data oscillations and is realized by a greedy algorithm. A detailed documentation of numerical results for selected test problems illustrates the convergence of the adaptive finite element method.

DOI : https://doi.org/10.1051/cocv:2007057
Classification:  65N30,  65N50,  49K20,  65K10
Keywords: a posteriori error analysis, distributed optimal control problems, control constraints, adaptive finite element methods, residual-type a posteriori error estimators, data oscillations
@article{COCV_2008__14_3_540_0,
     author = {Kieweg, Michael and Iliash, Yuri and Hoppe, Ronald H. W. and Hinterm\"uller, Michael},
     title = {An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     pages = {540-560},
     doi = {10.1051/cocv:2007057},
     zbl = {1157.65039},
     mrnumber = {2434065},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2008__14_3_540_0}
}
Kieweg, Michael; Iliash, Yuri; Hoppe, Ronald H. W.; Hintermüller, Michael. An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, pp. 540-560. doi : 10.1051/cocv:2007057. http://www.numdam.org/item/COCV_2008__14_3_540_0/

[1] M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000). | MR 1885308 | Zbl 1008.65076

[2] I. Babuska and W. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736-754. | MR 483395 | Zbl 0398.65069

[3] I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001). | MR 1857191

[4] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH-Zürich, Birkhäuser, Basel (2003). | MR 1960405 | Zbl 1020.65058

[5] R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283-301. | MR 777265 | Zbl 0569.65079

[6] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concepts. SIAM J. Control Optim. 39 (2000) 113-132. | MR 1780911 | Zbl 0967.65080

[7] M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, A comparison of a Moreau-Yosida based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495-521. | MR 1787272 | Zbl 1001.49034

[8] P. Binev, W. Dahmen and R. Devore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219-268. | MR 2050077 | Zbl 1063.65120

[9] C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71 (2002) 945-969. | MR 1898741 | Zbl 0997.65126

[10] C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13 (2005) 19-32. | MR 2130149 | Zbl 1073.78008

[11] C. Carstensen and R.H.W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method. Math. Comp. 75 (2006) 1033-1042. | MR 2219017 | Zbl 1094.65112

[12] C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103 (2006) 251-266. | MR 2222810 | Zbl 1101.65102

[13] W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | MR 1393904 | Zbl 0854.65090

[14] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations. Cambridge University Press, Cambridge (1995). | Zbl 0946.65049

[15] H.O. Fattorini, Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999). | MR 1669395 | Zbl 0931.49001

[16] M. Hintermüller, A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Quart. Appl. Math. LXI (2003) 131-161. | MR 1955227 | Zbl 1025.49022

[17] J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms. Springer, Berlin-Heidelberg-New York (1993). | Zbl 0795.49002

[18] R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237-263. | Numdam | MR 1382112 | Zbl 0843.65075

[19] R.H.W. Hoppe and B. Wohlmuth, Hierarchical basis error estimators for Raviart-Thomas discretizations of arbitrary order, in Finite Element Methods: Superconvergence, Post-Processing, and A Posteriori Error Estimates, M. Krizek, P. Neittaanmäki and R. Steinberg Eds., Marcel Dekker, New York (1998) 155-167. | MR 1602853 | Zbl 0902.65051

[20] R. Li, W. Liu H. Ma and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41 (2002) 1321-1349. | MR 1971952 | Zbl 1034.49031

[21] X.J. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston-Basel-Berlin (1995). | MR 1312364 | Zbl 0817.49001

[22] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin-Heidelberg-New York (1971). | MR 271512 | Zbl 0203.09001

[23] W. Liu and N. Yan, A posteriori error estimates for distributed optimal control problems. Adv. Comp. Math. 15 (2001) 285-309. | MR 1887737 | Zbl 1008.49024

[24] W. Liu and N. Yan, A posteriori error estimates for convex boundary control problems. Preprint, Institute of Mathematics and Statistics, University of Kent, Canterbury (2003). | MR 1860717 | Zbl 0988.49018

[25] P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466-488. | MR 1770058 | Zbl 0970.65113

[26] P. Neittaanmäki and S. Repin, Reliable methods for mathematical modelling. Error control and a posteriori estimates. Elsevier, New York (2004). | MR 2095603 | Zbl 1076.65093

[27] R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York, Stuttgart (1996). | Zbl 0853.65108

[28] O. Zienkiewicz and J. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. J. Numer. Meth. Eng. 28 (1987) 28-39. | MR 875306 | Zbl 0602.73063