Boundary controllability of the finite-difference space semi-discretizations of the beam equation
ESAIM: Control, Optimisation and Calculus of Variations, Volume 8  (2002), p. 827-862

We propose a finite difference semi-discrete scheme for the approximation of the boundary exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform (with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural functional setting. We then prove that there are two ways of restoring the uniform controllability property: a) filtering the high frequencies, i.e. controlling projections on subspaces where the high frequencies have been filtered; b) adding an extra boundary control to kill the spurious high frequency oscillations. In both cases the convergence of controls and controlled solutions is proved in weak and strong topologies, under suitable assumptions on the convergence of the initial data.

DOI : https://doi.org/10.1051/cocv:2002025
Classification:  93C20,  35Q33,  65N06
Keywords: beam equation, finite difference semi-discretization, exact boundary controllability
@article{COCV_2002__8__827_0,
     author = {Le\'on, Liliana and Zuazua, Enrique},
     title = {Boundary controllability of the finite-difference space semi-discretizations of the beam equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     pages = {827-862},
     doi = {10.1051/cocv:2002025},
     zbl = {1063.93025},
     mrnumber = {1932975},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2002__8__827_0}
}
León, Liliana; Zuazua, Enrique. Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM: Control, Optimisation and Calculus of Variations, Volume 8 (2002) , pp. 827-862. doi : 10.1051/cocv:2002025. http://www.numdam.org/item/COCV_2002__8__827_0/

[1] J. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Comm. Pure Appl. Math. 37 (1979) 555-587. | MR 528632 | Zbl 0394.93041

[2] E. Crépeau, Exact Controllability of the Boussinesq Equation on a Bounded Domain. Adv. Differential Equations (to appear). | MR 1947955 | Zbl pre02004902

[3] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. | Zbl 0685.93039

[4] A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1967) 367-379. | MR 1545625 | Zbl 0014.21503

[5] J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-d wave equation. Math. Model. Numer. Anal. 33 (1999) 407-438. | Numdam | MR 1700042 | Zbl 0947.65101

[6] E. Isaacson and H.B. Keller, Analysis of numerical methods. John Wiley and Sons (1966). | MR 201039 | Zbl 0168.13101

[7] V. Komornik, Exact controllability and stabilization: The multiplier method. Masson and John Wiley, RAM 36 (1994). | MR 1359765 | Zbl 0937.93003

[8] G. Lebeau, Contrôle de l' équation Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. | Zbl 0838.35013

[9] L. León, Controle Exato da Equação da Viga 1-D Semi-discretizada no Espaço por Diferenças Finitas, Ph.D. Thesis. Instituto de Matemática, Universidade Federal de Rio de Janeiro (2001).

[10] J.L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tome 1. Masson, RMA 8, Paris (1988). | Zbl 0653.93002

[11] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vols. 1 and 2. Dunod, Paris (1968). | MR 247243 | Zbl 0165.10801

[12] S. Micu, Uniform Boundary Controllability of a Semi-Discrete 1-D Wave Equation. Numer. Math. (to appear). | MR 1912914 | Zbl 1002.65072

[13] S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35 (1997) 1614-1637. | MR 1466919 | Zbl 0888.35017

[14] J. Simon, Compact sets in the space L P (0,T,B). Ann. Mat. Pura Appl. CXLVI (1987) 65-96. | MR 916688 | Zbl 0629.46031

[15] J.C. Strikwerda, Finite difference schemes and partial differential equation. Chapman and Hall (1995). | Zbl 1071.65118

[16] J.W. Thomas, Numerical partial differential equations; finite difference methods. Springer, Texts Appl. Math. 22 (1995). | MR 1367964 | Zbl 0831.65087

[17] R.M. Young, An introduction to nonharmonic Fourier series. Academic Press, Pure Appl. Math. A Series of Monographs and Textbooks (1980). | MR 591684 | Zbl 0493.42001

[18] E. Zuazua, Boundary observability for the finite space semi-discretization of the 2-d wave equation in the square. J. Math. Pures Appl. 78 (1999) 523-563. | MR 1697041 | Zbl 0939.93016

[19] E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques. Appendix I in [10] (1988) 465-491.