@article{COCV_1998__3__97_0, author = {Imanuvilov, O. Yu.}, title = {On exact controllability for the {Navier-Stokes} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {97--131}, publisher = {EDP-Sciences}, volume = {3}, year = {1998}, mrnumber = {1617825}, zbl = {1052.93502}, language = {en}, url = {http://www.numdam.org/item/COCV_1998__3__97_0/} }
Imanuvilov, O. Yu. On exact controllability for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 97-131. http://www.numdam.org/item/COCV_1998__3__97_0/
[1] Optimaal Control, Consultants Bureau, New York, 1987. | MR | Zbl
, , :[2] Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. of Dynamical and Control Syst. 2, 1996, n° 4, 449-483. | MR | Zbl
, , :[3] On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-slip boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, 1, 1996, 35-75. | Numdam | MR | Zbl
:[4] On the controllability of 2-D incompressible perfect fluids. J. Math. Pures et Appl., 75, 1996, 155-188. | MR | Zbl
:[5] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris, 317, Série I, 1993, 271-276. | MR | Zbl
:[6] Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary, Russian Journal of Math. Physics 4, 1996, n° 3, 1-20. | MR | Zbl
, :[7] Résultats d'unicité pour les équations de Stokes et applications au contrôle, C. R. Acad. Sci. Paris, 322, Série I, 19961191-1196. | Zbl
:[8] Prolongement unique des solutions de l'équation de Stokes, Com. P.D.E., 21, 1996, n° 3 - 4, 573-596. | MR | Zbl
, :[9] Lagrange principle for problems of optimal control of ill-posed or singular distributed systems, J. Maths Pures Appl., 71, 1992, n° 2, 139-195. | MR | Zbl
:[10] Exact boundary zero controllability of three dimensional Navier-Stokes equations, J. of Dynamical and Control Syst., 1, 1995, n° 3, 325-350. | MR | Zbl
:[11] The Cauchy problem for a second-order elliptic equation in a conditionally well-posed formulation, Trans. Moscow Math. Soc., 1990, 139-176. | MR | Zbl
:[12] On controllability of certain systems simulating a fluid flow, in Flow Control, IMA vol. Math. Appl., Ed. by M.D. Gunzburger, Springer-Verberg, New York, 68, 1995, 148-184. | MR | Zbl
, :[13] On exact boundary zero-controllability of two-dimensional Navier-Stokes equations, Acta Applicandæ Mathematicæ, 37, 1994, 67-76. | MR | Zbl
, :[14] Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary, Sbornik Mathematics, 187, 1996, n° 9, 1355-1390. | MR | Zbl
, :[15] Local exact boundary controllability of the Boussinesq equation, SIAM J. Cont. Opt., 36, Issue 2, 1998. | MR | Zbl
, :[16] Local exact controllability of the Navier-Stokes Equations, C. R. Acad. Sci. Paris, 323, Série I, 1996, 275-280. | MR | Zbl
, :[17] Controllability of evolution equations, Lecture notes series 34 SNU, Seoul 1996. | MR | Zbl
, ,[18] On approximate controllability of the Stokes system, Annales de la Faculté des Sciences de Toulouse, 11, 1993, 205-232. | Numdam | MR | Zbl
, :[19] Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. | MR | Zbl
:[20] Boundary controllability of parabolic equations, Sbornik Mathematics, 186, 1995, n° 6, 879-900. | MR | Zbl
:[21] Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions, Lecture Notes in Physics, 491, 1997, 148-168. | MR | Zbl
:[22] Introductory Real Analysis, Dover Publications, INC, New York, 1996. | MR | Zbl
, :[23] Linear and Quasilinear Equations of Elliptic Type, Academic Press, New York, 1968. | MR
, :[24] Contrôle des Systèmes Distribués Singuliers, Gauthier-Villars, Paris, 1983. | MR | Zbl
:[25] Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag 1971. | MR | Zbl
:[26] Are there connections bet ween turbulence and controllability?9e Conférence internationale de l'INRIA, Antibes. 12-15 juin 1990.
:[27] Navier-Stokes Equations, North-Holland Publishing Company, Amsterdam, 1979. | MR | Zbl
: