@article{CM_1991__77_2_199_0,
author = {Koelink, H. Tjerk},
title = {On $\ast $-representations of the {Hopf} $\ast $-algebra associated with the quantum group $U_q(n)$},
journal = {Compositio Mathematica},
pages = {199--231},
year = {1991},
publisher = {Kluwer Academic Publishers},
volume = {77},
number = {2},
mrnumber = {1091898},
zbl = {0721.17014},
language = {en},
url = {https://www.numdam.org/item/CM_1991__77_2_199_0/}
}
TY - JOUR AU - Koelink, H. Tjerk TI - On $\ast $-representations of the Hopf $\ast $-algebra associated with the quantum group $U_q(n)$ JO - Compositio Mathematica PY - 1991 SP - 199 EP - 231 VL - 77 IS - 2 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1991__77_2_199_0/ LA - en ID - CM_1991__77_2_199_0 ER -
%0 Journal Article %A Koelink, H. Tjerk %T On $\ast $-representations of the Hopf $\ast $-algebra associated with the quantum group $U_q(n)$ %J Compositio Mathematica %D 1991 %P 199-231 %V 77 %N 2 %I Kluwer Academic Publishers %U https://www.numdam.org/item/CM_1991__77_2_199_0/ %G en %F CM_1991__77_2_199_0
Koelink, H. Tjerk. On $\ast $-representations of the Hopf $\ast $-algebra associated with the quantum group $U_q(n)$. Compositio Mathematica, Tome 77 (1991) no. 2, pp. 199-231. https://www.numdam.org/item/CM_1991__77_2_199_0/
1 , The diamond lemma for ring theory, Advances Math. 29, 1978, 178-218. | Zbl | MR
2 , The twisted SU(3) group. Irreducible *-representations of the C*-algebra C(SμU(C)), Lett. Math. Phys. 17, 1989, 37-44. | Zbl
3 , Les C*-algèbres et leurs représentations, Gauthier-Villars, 1964. | Zbl | MR
4 , Quantum groups, in 'Proc. International Congress of Mathematicians, 1986', American Math. Soc., 1987, 798-820. | Zbl | MR
5 , and , Quantization of Lie groups and Lie algebras, in 'Algebraic Analysis', vol. 1 (eds. M. Kashiwara and T. Kawai), Academic Press, 1988, 129-139. | Zbl | MR
6 , Introduction to Lie algebras and representation theory, GTM 9, Springer Verlag, 1972. | Zbl | MR
7 , A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10, 1985, 63-69. | Zbl | MR
8 , Representation theory of semisimple groups, Princeton University Press, 1986. | Zbl | MR
9 , Orthogonal polynomials in connection with quantum groups, in 'Orthogonal Polynomials: Theory and Practice' (ed. P. Nevai), NATO ASI Series C, Vol. 294, Kluwer, 1990, 257-292. | Zbl | MR
10 , The theory of unitary group representations, The University of Chicago Press, 1976. | Zbl | MR
11 , Quantum groups and non-commutative geometry, Centre de Recherches Mathématiques, Université de Montreal, 1988. | Zbl
12 and , Quantum linear groups I, preprint, 1989. | MR
13 , and , Quantification of Lie groups and Lie algebras, Algebra i Analiz 1, 1989, 178-206. (In Russian.) | Zbl
14 , An analogue of P. B. W. theorem and the universal R-matrix for Uhsl(N + 1), Comm. Math. Phys. 124, 1989, 307-318. | Zbl | MR
15 , Functional analysis, Tata McGraw-Hill, 1974. | Zbl
16 , C*-algebras and W*-algebras, Springer Verlag, 1971. | Zbl | MR
17 , Hopf algebras, Benjamin, 1969. | Zbl | MR
18 , Theory of operator algebras I, Springer Verlag, 1979. | Zbl
19 and , Function algebra on the quantum group SU(2), Funktsional Anal. i. Prilozhen 22 (3), 1988, 1-14,English translation in Functional Anal. Appl. 22(3), 1988, 170-181. | Zbl | MR
20 , Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci. 23, 1987, 117-181. | Zbl | MR
21 , Compact matrix pseudogroups, Comm. Math. Phys. 111, 1987, 613-665. | Zbl | MR
22 , Tanaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93, 1988, 35-76. | Zbl | MR
23 , A Poincaré-Birkhoff-Witt theorem for the quantum group of type AN, Proc. Japan Acad. 64, Ser. A, 1988, 385-386. | Zbl | MR





