@article{CM_1988__68_2_161_0,
author = {Mrozik, Peter},
title = {Finite-dimensional categorial complement theorems in shape theory},
journal = {Compositio Mathematica},
pages = {161--173},
year = {1988},
publisher = {Kluwer Academic Publishers},
volume = {68},
number = {2},
mrnumber = {966578},
zbl = {0665.55006},
language = {en},
url = {https://www.numdam.org/item/CM_1988__68_2_161_0/}
}
Mrozik, Peter. Finite-dimensional categorial complement theorems in shape theory. Compositio Mathematica, Tome 68 (1988) no. 2, pp. 161-173. https://www.numdam.org/item/CM_1988__68_2_161_0/
1 : Theory of Retracts. Monografie Matematyczne Tom 44, PWN Warszawa (1967). | Zbl | MR
2 : On some applications of infinite-dimensional manifolds to the theory of shape. Fund. Math. 76 (1972) 181-193. | Zbl | MR
3 : Shapes of finite-dimensional compacta, Fund. Math. 76 (1972) 261-276. | Zbl | MR
4 and : Čech and Steenrod Homotopy Theories with Applications to Geometric Topology. Lecture Notes in Math. 542, Springer, Berlin-Heidelberg-New York (1976). | Zbl | MR
5 and : Shape Theory. North Holland, Amsterdam (1982). | Zbl | MR
6 and : Cohomology Operations and Applications in Homotopy Theory. Harper & Row, New York (1968). | Zbl | MR
7 : Chapman's category isomorphism for arbitrary ARs. Fund. Math. 125 (1985) 195-208. | Zbl | MR
8 : Complement theorems in shape theory. In: Shape Theory and Geometric Topology S. Mardešić and J. Segal (ed.) Lecture Notes in Math. 870, Springer, Berlin-Heidelberg -New York (1981) pp. 150-168. | Zbl | MR
9 : Algebraic Topology. McGraw-Hill, New York (1966). | Zbl | MR
10 : Embeddings of compacta with shape dimension in the trivial range. Proc. Amer. Math. Soc. 55 (1976) 443-448. | Zbl | MR
11 : Embeddings in shape theory. In: Shape Theory and Geometric Topology. S. Mardešić and J. Segal (eds.) Lecture Notes in Math. 870, Springer, Berlin-Heidelberg -New York (1981) pp. 169-185. | Zbl | MR





