[Les composantes de fibre de Springer, dans le cas de deux colonnes de types et , sont normales]
We study the singularities of the irreducible components of the Springer fiber over a nilpotent element with in a Lie algebra of type or (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen-Macaulay, and have rational singularities.
Keywords: Springer fiber, Frobenius splitting, normality, rational resolution, rational singularities
@article{BSMF_2012__140_3_309_0,
author = {Perrin, Nicolas and Smirnov, Evgeny},
title = {Springer fiber components in the two columns case for types $A$ and $D$ are normal},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {309--333},
year = {2012},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {140},
number = {3},
doi = {10.24033/bsmf.2629},
mrnumber = {3059118},
zbl = {1268.14006},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2629/}
}
TY - JOUR AU - Perrin, Nicolas AU - Smirnov, Evgeny TI - Springer fiber components in the two columns case for types $A$ and $D$ are normal JO - Bulletin de la Société Mathématique de France PY - 2012 SP - 309 EP - 333 VL - 140 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2629/ DO - 10.24033/bsmf.2629 LA - en ID - BSMF_2012__140_3_309_0 ER -
%0 Journal Article %A Perrin, Nicolas %A Smirnov, Evgeny %T Springer fiber components in the two columns case for types $A$ and $D$ are normal %J Bulletin de la Société Mathématique de France %D 2012 %P 309-333 %V 140 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2629/ %R 10.24033/bsmf.2629 %G en %F BSMF_2012__140_3_309_0
Perrin, Nicolas; Smirnov, Evgeny. Springer fiber components in the two columns case for types $A$ and $D$ are normal. Bulletin de la Société Mathématique de France, Tome 140 (2012) no. 3, pp. 309-333. doi: 10.24033/bsmf.2629
[1] - Groupes et algèbres de Lie, Hermann, 1954. | Zbl
[2] & - Frobenius splitting methods in geometry and representation theory, Progress in Math., vol. 231, Birkhäuser, 2005. | Zbl | MR
[3] - « Désingularisation des variétés de Schubert généralisées », Ann. Sci. École Norm. Sup. 7 (1974), p. 53-88. | Zbl | MR | Numdam
[4] - « Composantes singulières des fibres de Springer dans le cas deux-colonnes », C. R. Math. Acad. Sci. Paris 347 (2009), p. 631-636. | Zbl | MR
[5] -, « Singular components of Springer fibers in the two-column case », Ann. Inst. Fourier (Grenoble) 59 (2009), p. 2429-2444. | Zbl | MR | Numdam
[6] & - « On the singularity of the irreducible components of a Springer fiber in », Selecta Math. (N.S.) 16 (2010), p. 393-418. | Zbl | MR
[7] - Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge Univ. Press, 1997. | Zbl | MR
[8] - « On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory », Adv. Math. 178 (2003), p. 244-276. | Zbl | MR
[9] , & (éds.) - Lie groups and Lie algebras, III, Encyclopaedia of Math. Sciences, vol. 41, Springer, 1994. | Zbl | MR
[10] & - « Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen », Invent. Math. 11 (1970), p. 263-292. | Zbl | MR
[11] & - « Frobenius splitting and geometry of -Schubert varieties », Adv. Math. 219 (2008), p. 1469-1512. | Zbl | MR
[12] -, « On Frobenius splitting of orbit closures of spherical subgroups in flag varieties », preprint arXiv:1006.5175. | Zbl
[13] - Kac-Moody groups, their flag varieties and representation theory, Progress in Math., vol. 204, Birkhäuser, 2002. | Zbl | MR
[14] - « A Robinson-Schensted algorithm in the geometry of flags for classical groups », Thèse, Rijksuniversiteit Utrecht, 1989.
[15] - Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer, 1982. | Zbl | MR
[16] & - « 2-block Springer fibers: convolution algebras, coherent sheaves and embedded TQFT », preprint arXiv:0802.1943. | Zbl | MR
Cité par Sources :






