For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) spaces, using the usual square function defined by a dyadic partition.
Pour certaines variétés riemanniennes à bouts, satisfaisant ou non la condition de doublement de volume des boules géodésiques, nous obtenons des décompositions de Littlewood-Paley sur des espaces (à poids), en utilisant la fonction carrée usuelle définie via une partition dyadique.
Keywords: Littlewood-Paley decomposition, square function, manifolds with ends, semiclassical analysis
Mot clés : décomposition de Littlewood-Paley, fonction carrée, variétés à bouts, analyse semi-classique
@article{BSMF_2010__138_1_1_0, author = {Bouclet, Jean-Marc}, title = {Littlewood-Paley decompositions on manifolds with ends}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {1--37}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {138}, number = {1}, year = {2010}, doi = {10.24033/bsmf.2584}, mrnumber = {2638890}, zbl = {1198.42013}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2584/} }
TY - JOUR AU - Bouclet, Jean-Marc TI - Littlewood-Paley decompositions on manifolds with ends JO - Bulletin de la Société Mathématique de France PY - 2010 SP - 1 EP - 37 VL - 138 IS - 1 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2584/ DO - 10.24033/bsmf.2584 LA - en ID - BSMF_2010__138_1_1_0 ER -
%0 Journal Article %A Bouclet, Jean-Marc %T Littlewood-Paley decompositions on manifolds with ends %J Bulletin de la Société Mathématique de France %D 2010 %P 1-37 %V 138 %N 1 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2584/ %R 10.24033/bsmf.2584 %G en %F BSMF_2010__138_1_1_0
Bouclet, Jean-Marc. Littlewood-Paley decompositions on manifolds with ends. Bulletin de la Société Mathématique de France, Volume 138 (2010) no. 1, pp. 1-37. doi : 10.24033/bsmf.2584. http://www.numdam.org/articles/10.24033/bsmf.2584/
[1] « Semi-classical functional calculus on manifolds with ends and weighted estimates », to appear in Ann. Inst. Fourier. | Numdam | MR | Zbl
-[2] -, « Strichartz estimates on asymptotically hyperbolic manifolds », to appear in Analysis & PDE. | Zbl
[3] « Strichartz estimates for long range perturbations », Amer. J. Math. 129 (2007), p. 1565-1609. | MR | Zbl
& -[4] -, « On global Strichartz estimates for non-trapping metrics », J. Funct. Anal. 254 (2008), p. 1661-1682. | MR | Zbl
[5] « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | MR | Zbl
, & -[6] « Littlewood-Paley-Stein functions on complete Riemannian manifolds for », Studia Math. 154 (2003), p. 37-57. | MR | Zbl
, & -[7] « A geometric approach to the Littlewood-Paley theory », Geom. Funct. Anal. 16 (2006), p. 126-163. | MR | Zbl
& -[8] « Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive », Ann. Sci. École Norm. Sup. 20 (1987), p. 505-544. | Numdam | MR | Zbl
-[9] « Harmonic analysis related to Schrödinger operators », in Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., 2008, p. 213-230. | MR | Zbl
& -[10] « A remark on Littlewood-Paley theory for the distorted Fourier transform », Proc. Amer. Math. Soc. 135 (2007), p. 437-451 (electronic). | MR | Zbl
-[11] -, « Lecture notes on harmonic analysis », http://www.math.uchicago.edu/~schlag/book.pdf.
[12] Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge Univ. Press, 1993. | MR | Zbl
-[13] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. | MR | Zbl
-[14] « -estimates on functions of the Laplace operator », Duke Math. J. 58 (1989), p. 773-793. | MR | Zbl
-[15] -, Partial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer, 1997. | Zbl
Cited by Sources: