[Trivialisation de -algèbres à fibres fortement auto-absorbantes]
Suppose is a separable unital -algebra each fibre of which is isomorphic to the same strongly self-absorbing and -injective -algebra . We show that and are isomorphic as -algebras provided the compact Hausdorff space is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.
Soit une -algèbre séparable unital dont chaque fibre est isomorphe à une même -algèbre -injective et fortement auto-absorbante. Nous montrons que si l’espace compact et Hausdorff est de dimension finie, alors et sont isomorphes en tant que -algèbres. Ce resultat est connu pour ne pas s’étendre au cas des espaces de dimension infinie.
Keywords: strongly self-absorbing $C^*$-algebra, asymptotic unitary equivalence, continuous field of $C^{*}$-algebras
Mots-clés : $C^{*}$-algèbre fortement auto-absorbante, équivalence unitaire asymptotique, champ continu de $C^{*}$-algèbres
@article{BSMF_2008__136_4_575_0,
author = {Dadarlat, Marius and Winter, Wilhelm},
title = {Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {575--606},
year = {2008},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {136},
number = {4},
doi = {10.24033/bsmf.2567},
mrnumber = {2443037},
zbl = {1170.46051},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2567/}
}
TY - JOUR
AU - Dadarlat, Marius
AU - Winter, Wilhelm
TI - Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres
JO - Bulletin de la Société Mathématique de France
PY - 2008
SP - 575
EP - 606
VL - 136
IS - 4
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2567/
DO - 10.24033/bsmf.2567
LA - en
ID - BSMF_2008__136_4_575_0
ER -
%0 Journal Article
%A Dadarlat, Marius
%A Winter, Wilhelm
%T Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres
%J Bulletin de la Société Mathématique de France
%D 2008
%P 575-606
%V 136
%N 4
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2567/
%R 10.24033/bsmf.2567
%G en
%F BSMF_2008__136_4_575_0
Dadarlat, Marius; Winter, Wilhelm. Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 4, pp. 575-606. doi: 10.24033/bsmf.2567
[1] & - « Generalized inductive limits of finite-dimensional -algebras », Math. Ann. 307 (1997), p. 343-380. | Zbl | MR
[2] & - « Global Glimm halving for -bundles », J. Operator Theory 52 (2004), p. 385-420. | Zbl | MR
[3] - « Continuous fields of -algebras over finite dimensional spaces », preprint, arXiv:math.OA/0611405, 2006. | Zbl | MR
[4] -, « Fiberwise -equivalence of continuous fields of -algebras », preprint, arXiv:math.OA/0611408, 2006.
[5] & - « On the -theory of strongly self-absorbing -algebras », preprint, arXiv:0704.0583, to appear in Math. Scand., 2007. | Zbl | MR
[6] & - « Champs continus d’espaces hilbertiens et de -algèbres », Bull. Soc. Math. France 91 (1963), p. 227-284. | Zbl | MR | Numdam
[7] , & - « -algebras, stability and strongly self-absorbing -algebras », Math. Ann. 339 (2007), p. 695-732. | Zbl | MR
[8] & - Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, 1941. | Zbl | MR
[9] - « Equivariant -theory and the Novikov conjecture », Invent. Math. 91 (1988), p. 147-201. | Zbl | MR
[10] - « Central sequences in -algebras and strongly purely infinite algebras », in Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, 2006, p. 175-231. | Zbl | MR
[11] - Classification of nuclear -algebras, Encyclopaedia Math. Sci, vol. 126, Springer, 2002. | Zbl | MR
[12] & - « Strongly self-absorbing -algebras », Trans. Amer. Math. Soc. 359 (2007), p. 3999-4029. | Zbl | MR
[13] - « Localizing the Elliott conjecture at strongly self-absorbing -algebras », preprint, arXiv:0708.0283, 2007. | MR
[14] -, « Simple -algebras with locally finite decomposition rank », J. Funct. Anal. 243 (2007), p. 394-425. | Zbl | MR
Cité par Sources :






