[Une dichotomie uniforme pour des cocycles à valeurs dans au-dessus d’une dynamique minimale]
We consider continuous -cocycles over a minimal homeomorphism of a compact set of finite dimension. We show that the generic cocycle either is uniformly hyperbolic or has uniform subexponential growth.
On considère des cocycles continus à valeurs dans au-dessus d’un homéomorphisme minimal d’un ensemble compact de dimension finie. On montre que le cocycle générique soit est uniformément hyperbolique, soit possède une croissance sous-exponentielle uniforme.
Keywords: cocycle, minimal homeomorphism, uniform hyperbolicity, Lyapunov exponents
Mots-clés : cocycle, homéomorphisme minimal, hyperbolicité uniforme, exposants de Liapounov
@article{BSMF_2007__135_3_407_0,
author = {Avila, Artur and Bochi, Jairo},
title = {A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {407--417},
year = {2007},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {135},
number = {3},
doi = {10.24033/bsmf.2540},
mrnumber = {2430187},
zbl = {1217.37017},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2540/}
}
TY - JOUR
AU - Avila, Artur
AU - Bochi, Jairo
TI - A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base
JO - Bulletin de la Société Mathématique de France
PY - 2007
SP - 407
EP - 417
VL - 135
IS - 3
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/bsmf.2540/
DO - 10.24033/bsmf.2540
LA - en
ID - BSMF_2007__135_3_407_0
ER -
%0 Journal Article
%A Avila, Artur
%A Bochi, Jairo
%T A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base
%J Bulletin de la Société Mathématique de France
%D 2007
%P 407-417
%V 135
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2540/
%R 10.24033/bsmf.2540
%G en
%F BSMF_2007__135_3_407_0
Avila, Artur; Bochi, Jairo. A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base. Bulletin de la Société Mathématique de France, Tome 135 (2007) no. 3, pp. 407-417. doi: 10.24033/bsmf.2540
[1] - « Genericity of zero Lyapunov exponents », Ergodic Theory Dynam. Systems 22 (2002), p. 1667-1696. | Zbl | MR
[2] & - « The Lyapunov exponents of generic volume-preserving and symplectic maps », Ann. of Math. (2) 161 (2005), p. 1423-1485. | Zbl | MR
[3] & - « Multiple Rokhlin tower theorem: a simple proof », New York J. Math. 3A (1997/98), p. 11-14. | Zbl | MR
[4] - « On the multiplicative ergodic theorem for uniquely ergodic systems », Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), p. 797-815. | Zbl | MR | Numdam
[5] Cống - « A generic bounded linear cocycle has simple Lyapunov spectrum », Ergodic Theory Dynam. Systems 25 (2005), p. 1775-1797. | Zbl | MR
[6] - Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. | Zbl | MR
[7] - « Some questions and remarks about cocycles », in Modern dynamical systems and applications, Cambridge Univ. Press, 2004, p. 447-458. | Zbl | MR
Cité par Sources :







