Entropy maximisation problem for quantum relativistic particles
Bulletin de la Société Mathématique de France, Volume 133 (2005) no. 1, p. 87-120

The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.

L'entropie d'un gaz idéal de particules, classiques ou quantiques, est maximisée lorsque la densité du nombre de particules, l'impulsion et l'énergie sont fixées. La loi de dispersion qui relie l'impulsion et l'énergie est linéaire ou quadratique, selon que le comportement des particules est non relativiste ou relativiste.

DOI : https://doi.org/10.24033/bsmf.2480
Classification:  82B40,  82C40,  83-02
Keywords: entropy, maximisation problem, moments, bosons, fermions
@article{BSMF_2005__133_1_87_0,
     author = {Escobedo, Miguel and Mischler, St\'ephane and Valle, Manuel A.},
     title = {Entropy maximisation problem for quantum relativistic particles},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {133},
     number = {1},
     year = {2005},
     pages = {87-120},
     doi = {10.24033/bsmf.2480},
     zbl = {1074.82011},
     mrnumber = {2145021},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_2005__133_1_87_0}
}
Escobedo, Miguel; Mischler, Stéphane; Valle, Manuel A. Entropy maximisation problem for quantum relativistic particles. Bulletin de la Société Mathématique de France, Volume 133 (2005) no. 1, pp. 87-120. doi : 10.24033/bsmf.2480. http://www.numdam.org/item/BSMF_2005__133_1_87_0/

[1] H. Andréasson - « Regularity of the gain term and strong L 1 convergence to equilibrium for the relativistic Boltzmann equation », SIAM J. Math. Anal. 27 (1996), no. 5, p. 1386-1405. | MR 1402446 | Zbl 0858.76072

[2] S. Bose - « Plancks Gesetz und Lichtquantenhypothese », Z. Phys. 26 (1924), p. 178-181. | JFM 51.0732.04

[3] R. Caflisch & C. Levermore - « Equilibrium for radiation in a homogeneous plasma », Phys. Fluids 29 (1986), p. 748-752. | MR 828191

[4] C. Cercignani - The Boltzmann equation and its applications, Applied Math. Sciences, vol. 67, Springer Verlag, 1988. | MR 1313028 | Zbl 0646.76001

[5] N. Chernikov - « Equilibrium distribution of the relativistic gas », Acta Phys. Polon. 26 (1964), p. 1069-1092. | MR 180286

[6] F. Demengel & R. Temam - « Convex functions of a measure and applications », Indiana Univ. Math. J. 33 (984), no. 5, p. 673-709. | MR 756154 | Zbl 0581.46036

[7] J. Dolbeault - « Kinetic models and quantum effects, a modified Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 127, p. 101-131. | MR 1288807 | Zbl 0808.76084

[8] M. Dudyński & M. Ekiel-Jeżewska - « Global existence proof for relativistic Boltzmann equation », J. Statist. Phys. 66 (1992), no. 2,3, p. 991-1001. | MR 1151987 | Zbl 0899.76314

[9] A. Einstein - « Quantentheorie des einatomingen idealen Gases », Stiz. Presussische Akademie der Wissenschaften Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 3-14. | JFM 51.0755.04

[10] -, « Zur Quantentheorie des idealen Gases », Stiz. Presussische Akademie der Wissenschaften, Phys-math. Klasse, Sitzungsberichte 23 (1925), p. 18-25.

[11] M. Escobedo & S. Mischler - « On a quantum Boltzmann equation for a gas of photons », J. Math. Pures Appl. 80 (2001), no. 55, p. 471-515. | MR 1831432 | Zbl 1134.82318

[12] M. Escobedo, S. Mischler & M. Valle - Homogeneous Boltzmann equation for quantum and relativistic particles, Electronic J. Diff. Eqns. Monographs, vol. 4, 2003, http://ejde.math.swt.edu. | Zbl 1103.82022

[13] R. Glassey - The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. | MR 1379589 | Zbl 0858.76001

[14] R. Glassey & W. Strauss - « Asymptotic stability of the relativistic Maxwellian », Publ. Res. Inst. Math. Sciences, Kyoto University 29 (1993), no. 2. | MR 1211782 | Zbl 0776.45008

[15] -, « Asymptotic stability of the relativistic Maxwellian via fourteen moments », Transport Theory Stat. Physics 24 (1995), p. 657-678. | MR 1321370 | Zbl 0882.35123

[16] S. Groot, W. Van Leeuwen & C. Van Weert - Relativistic kinetic theory, North Holland Publishing Company, 1980. | MR 635279

[17] X. Lu - « A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long time behavior », J. Statist. Phys. 98 (2000), no. 5,6, p. 1335-1394. | MR 1751703 | Zbl 1005.82026

[18] -, « On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles », J. Statist. Phys. 105 (2001), no. 1,2, p. 353-388. | MR 1861208 | Zbl 1156.82380

[19] X. Lu & B. Wennberg - « On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles », Arch. Rat. Mech. Anal. 168 (2003), no. 1, p. 1-34. | MR 2029003 | Zbl 1044.76058

[20] G. Naber - The geometry of Minkowski spacetime, Springer Verlag, 1992. | MR 1174969 | Zbl 0757.53046

[21] R. Pathria - Statistical Mechanics, Pergamon Press, 1972. | Zbl 1209.82001

[22] C. Villani - « A review of mathematical topics on collisional kinetic theory », Handbook of Mathematical Fluid Mechanics, Vol. I (S. Friedlander & D. Serre, éds.), North Holland, Amsterdam, 2002. | MR 1942465 | Zbl 1170.82369