Facteurs -simples de J 0 (N) de grande dimension et de grand rang
Bulletin de la Société Mathématique de France, Tome 128 (2000) no. 2, p. 219-248
@article{BSMF_2000__128_2_219_0,
     author = {Royer, Emmanuel},
     title = {Facteurs $\mathbb {Q}$-simples de $J\_{0}(N)$ de grande dimension et de grand rang},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {128},
     number = {2},
     year = {2000},
     pages = {219-248},
     doi = {10.24033/bsmf.2369},
     zbl = {0968.11027},
     mrnumber = {2001j:11041},
     language = {fr},
     url = {http://www.numdam.org/item/BSMF_2000__128_2_219_0}
}
Royer, Emmanuel. Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang. Bulletin de la Société Mathématique de France, Tome 128 (2000) no. 2, pp. 219-248. doi : 10.24033/bsmf.2369. http://www.numdam.org/item/BSMF_2000__128_2_219_0/

[1] Brumer (A.). - The Rank of J0(N), Astérisque 228, 1995, p. 41-68. | MR 96f:11083 | Zbl 0851.11035

[2] Conrey (J.), Duke (W.), Farmer (D.W.). - The distribution of the eigenvalues of Hecke operators, Acta Arithmetica, t. 78, 4, 1997, p. 405-409. | MR 98k:11047 | Zbl 0876.11020

[3] Cornell (G.), Silverman (J.H.) (eds). - Modular Forms and Fermat's Last Theorem. - Springer-Verlag, Berlin Heidelberg New-York, 1997. | MR 99k:11004 | Zbl 0878.11004

[4] Diamond (F.), Im (J.). - Modular forms and modular curves, in Fermat Last Theorem, Canadian Math. Soc., 1995, p. 39-133. | MR 97g:11044 | Zbl 0853.11032

[5] Dubickas (A.), Konyagin (S.V.). - On the number of polynomials of bounded measure, Acta Arithmetica, t. 86, n° 4, 1998, p. 325-342. | MR 99m:11122 | Zbl 0926.11080

[6] Gamburd (A.), Jakobson (D.), Sarnak (P.). - Spectra of elements in the group ring of SU(2), J. Europ. Math. Soc., t. 1, 1999, p. 1-35. | MR 2000e:11102 | Zbl 0916.22009

[7] Guo (J.). - On the positivity of the central critical values of automorphic L-functions for GL(2), Duke Math. J., t. 83, 1996, p. 157-190. | MR 97h:11055 | Zbl 0861.11032

[8] Gross (B.H.), Zagier (D.B.). - Heegner points and derivatives L-series, Inventiones Math., t. 84, 1986, p. 225-320. | MR 87j:11057 | Zbl 0608.14019

[9] Iwaniec (H.), Sarnak (P.). - The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros, Preprint, 1997.

[10] Iwaniec (H.). - Topics in Classical Automorphic Forms, Graduate Studies in Math., vol. 17, Amer. Math. Soc., 1997. | MR 98e:11051 | Zbl 0905.11023

[11] Kowalski (E.), Michel (P.). - A lower bound for the rank of J0(q), Prépublication, Université Paris-Sud, t. 97, n° 69, 1997.

[12] Kowalski (E.), Michel (P.). - Sur les zéros des fonctions L de formes automorphes, Prépublication, Université Paris-Sud, t. 97, n° 54, 1997.

[13] Kowalski (E.), Michel (P.). - The analytic rank of J0(q) and zeros of automorphic L-functions, Duke Math. J., à paraître. | Zbl 01425264

[14] Kohnen (W.). - Fourier Coefficients of Modular Forms of Half-Integral Weight, Math. Annalen, t. 271, n° 2, 1985, p. 237-268. | MR 86i:11018 | Zbl 0542.10018

[15] Kowalski (E.). - The rank of the jacobians of modular curves: analytic methods, Thesis, Rutgers University, disponible sur http://www.princeton.edu/˜ekowalsk/These/these.html, 1998.

[16] Rivlin (T.J.). - Chebyshev Polynomials: from Approximation Theory to Algebra and Number Theory, 2e éd. - Pure and Applied Mathematics, Wiley-Interscience, New York, 1990. | Zbl 0734.41029

[17] Rohrlich (D.E.). - Non vanishing of L-functions for GL(2), Inventiones Math., t. 97, 1989, p. 381-403. | MR 90g:11062 | Zbl 0677.10020

[18] Rohrlich (D.E.). - Modular Curves, Hecke Correspondences, and L-functions, in Cornell and Silvermann [3], chap. 3, 1997, p. 41-100. | MR 1638476 | Zbl 0897.11019

[19] Serre (J.-P.). - Répartition asymptotique des valeurs propres de l'opérateur de Hecke Tp, J. Amer. Math. Soc., t. 10, n° 1, 1997, p. 75-102. | MR 97h:11048 | Zbl 0871.11032

[20] Tenenbaum (G.). - Introduction à la théorie analytique et probabiliste des nombres. - Cours spécialisés, vol. 1, Soc. Math. France, 1995. | MR 97e:11005a | Zbl 0880.11001