Spectral properties of G-symbolic Morse shifts
Bulletin de la Société Mathématique de France, Volume 115  (1987), p. 19-33
@article{BSMF_1987__115__19_0,
     author = {Kwiatkowski, Jan and Sikorski, Andrzej},
     title = {Spectral properties of G-symbolic Morse shifts},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {115},
     year = {1987},
     pages = {19-33},
     doi = {10.24033/bsmf.2067},
     zbl = {0624.28014},
     mrnumber = {88i:28032},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_1987__115__19_0}
}
Kwiatkowski, Jan; Sikorski, Andrzej. Spectral properties of G-symbolic Morse shifts. Bulletin de la Société Mathématique de France, Volume 115 (1987) , pp. 19-33. doi : 10.24033/bsmf.2067. http://www.numdam.org/item/BSMF_1987__115__19_0/

[1] Baxter (J. R.). - A class of ergodic transformations having simple spectra, P.A.M.S., Vol. 27, 1971, pp. 275-279. | MR 43 #2187 | Zbl 0206.06404

[2] Coquet (J.), Kamae (T.) et Mendes-France (M.). - Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France, Vol. 105, 1977, pp. 369-384. | Numdam | MR 57 #12439 | Zbl 0383.10035

[3] Del Junco (A.). - A transformation with simple spectrum which is not rank one, Can. J. Math., Vol. 29, No. 3, 1977, pp. 653-663. | MR 57 #6367 | Zbl 0335.28010

[4] Goodson (G. R.). - On the spectral multiplicity of a class of finite rank transformation, preprint, 1984.

[5] Kakutani (S.). - Strictly ergodic symbolic dynamical systems, Proc. 6th Berkeley Symp., Vol. 2, pp. 319-326. | MR 53 #8383 | Zbl 0262.28014

[6] Keane (M.). - Generalized Morse sequences, Z. Wahr. verw. Geb., Vol. 10, 1968, pp. 335-353. | MR 39 #406 | Zbl 0162.07201

[7] Keane (M.). - Strongly mixing g-measures, Inventiones Math., Vol. 16, No. 4, 1972, pp. 309-324. | MR 46 #9295 | Zbl 0241.28014

[8] Kwiatkowski (J.). - Spectral isomorphism of Morse dynamical systems, Bull. Acad. Pol. Sc., serie sc. math., Vol. XXIX, No. 3-4, 1981, pp. 105-114. | MR 83g:28033 | Zbl 0496.28019

[9] Kwiatkowski (J.). - Isomorphism of regular Morse dynamical systems induced by arbitrary blocks, Studia Math., Vol. 84, No. 3 (to appear). | MR 88g:28020a | Zbl 0674.58023

[10] Lemanczyk (M.). - The centralizer of Morse shifts.

[11] Martin (J. C.). - Generalized Morse sequences on n-symbols, P.A.M.S., Vol. 54, 1976, pp. 379-383. | MR 52 #11880 | Zbl 0317.54054

[12] Martin (J. C.). - The structure of generalized Morse minimal sets on n-symbols, P.A.M.S., Vol. 2, 1977, pp. 343-355. | MR 57 #3352 | Zbl 0375.28010

[13] Queffelec (M.). - Mesures spectrales associées à certaines suites arithmétiques, Bull. Soc. Math. France, Vol. 107, 1979, pp. 385-421. | Numdam | MR 81c:10071 | Zbl 0435.42007

[14] Queffelec (M.). - Contribution à l'étude spectrale de suites arithmétiques, Thèse, 1984.

[15] Parry (W.). - Topics in ergodic theory, Cambridge, University Press, 1981. | MR 83a:28018 | Zbl 0449.28016

[16] Robinson (E. R.). - Ergodic measure preserving transformations with arbitrary finite spectral multiplicity, Preprint, University of Maryland, 1982.