@article{BSMF_1969__97__289_0,
author = {Takesaki, M.},
title = {A generalized commutation relation for the regular representation},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {289--297},
year = {1969},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {97},
doi = {10.24033/bsmf.1683},
mrnumber = {40 #7831},
zbl = {0188.20101},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.1683/}
}
TY - JOUR AU - Takesaki, M. TI - A generalized commutation relation for the regular representation JO - Bulletin de la Société Mathématique de France PY - 1969 SP - 289 EP - 297 VL - 97 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.1683/ DO - 10.24033/bsmf.1683 LA - en ID - BSMF_1969__97__289_0 ER -
%0 Journal Article %A Takesaki, M. %T A generalized commutation relation for the regular representation %J Bulletin de la Société Mathématique de France %D 1969 %P 289-297 %V 97 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.1683/ %R 10.24033/bsmf.1683 %G en %F BSMF_1969__97__289_0
Takesaki, M. A generalized commutation relation for the regular representation. Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 289-297. doi: 10.24033/bsmf.1683
[1] . - Intégration, chap. 7-8. - Paris, Hermann, 1963 (Act. scient. et ind., 1306 ; Bourbaki, 29). | Zbl
[2] . - Les algèbres d'opérateurs dans l'espace hilbertien. - Paris, Gauthier-Villars, 1957. | Zbl
[3] . - Les C*-algèbres et leurs représentations. - Paris, Gauthier-Villars, 1964 (Cahiers scientifiques, 29). | Zbl | MR
[4] . - Algèbres quasi-unitaires, Comment. Math. Helvet., t. 26, 1952, p. 275-322. | Zbl | MR
[5] , and . - Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys., Berlin, t. 3, 1966, p. 1-28. | Zbl | MR
[6] . - An extension of Mackey's method to representations of algebraic bundles (to appear).
[7] . - Families of induced representations, Pacific J. Math., t. 12, 1962, p. 885-911. | Zbl | MR
[8] . - Note on a theorem of Mackey, Duke Math. J., t. 19, 1952, p. 641-645. | Zbl | MR
[9] . - A theorem of Stone and von Neumann, Duke Math. J., t. 16, 1949, p. 313-326. | Zbl | MR
[10] . - Induced representations of locally compact groups, I, Annals of Math., Series 2, t. 55, 1952, p. 101-139. | Zbl | MR
[11] . - Unitary representations of group extensions, Acta Math., t. 99, 1958, p. 265-311. | Zbl | MR
[12] . - Infinite-dimensional group representations, Bull. Amer. math. Soc., t. 69, 1963, p. 628-686. | Zbl | MR
[13] and . - Heisenberg's commutation relation and the Plancherel theorem, Proc. Japan Acad., t. 37, 1961, p. 239-242. | Zbl | MR
[14] . - Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Annalen, t. 104, 1931, p. 570-578. | Zbl | JFM
[15] . - On some representations of C*-algebras, Tohoku math. J., t. 65, 1963, p. 79-95. | Zbl | MR
[16] . - Covariant representations of C*-algebras and their locally compact automorphism groups, Acta Math., t. 119, 1967, p. 273-303. | Zbl | MR
[17] . - A characterization of group algebra as a converse of Tanneka-Stinespring-Tatsuuma duality theorem (to appear).
[18] . - A liminal crossed product of a uniformly hyperfinite C*-algebra by a compact abelian automorphism group (to appear).
[19] . - Crossed product of operator algebras, Tohoku math. J., t. 10, 1958, p. 355-365. | Zbl | MR
[20] . - Produits croisés d'une C*-algèbre par un groupe d'automorphismes (to appear).
[21] . - A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. math. Phys., t. 4, 1963, p. 1343-1362. | Zbl | MR
Cité par Sources :






