@article{BSMF_1965__93__43_0,
author = {Lions, Jacques-Louis and Strauss, W.A.},
title = {Some non-linear evolution equations},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {43--96},
year = {1965},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {93},
doi = {10.24033/bsmf.1616},
mrnumber = {33 #7663},
zbl = {0132.10501},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.1616/}
}
TY - JOUR AU - Lions, Jacques-Louis AU - Strauss, W.A. TI - Some non-linear evolution equations JO - Bulletin de la Société Mathématique de France PY - 1965 SP - 43 EP - 96 VL - 93 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.1616/ DO - 10.24033/bsmf.1616 LA - en ID - BSMF_1965__93__43_0 ER -
%0 Journal Article %A Lions, Jacques-Louis %A Strauss, W.A. %T Some non-linear evolution equations %J Bulletin de la Société Mathématique de France %D 1965 %P 43-96 %V 93 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.1616/ %R 10.24033/bsmf.1616 %G en %F BSMF_1965__93__43_0
Lions, Jacques-Louis; Strauss, W.A. Some non-linear evolution equations. Bulletin de la Société Mathématique de France, Tome 93 (1965), pp. 43-96. doi: 10.24033/bsmf.1616
[1]. - Un théorème de compacité, C. R. Acad. Sc. Paris, t. 256, 1963, p. 5042-5044. | Zbl | MR
[2]. - Nonlinear elliptic boundary value problems, Bull. Amer, math. Soc., t. 69, 1963, p. 862-874. | Zbl | MR
[3]. - Strongly nonlinear parabolic boundary value problems (to appear). | Zbl
[4]. - Non-linear equations of evolution, Annals of Math (to appear). | Zbl | MR
[5]. - Sur les problèmes de Cauchy hyperboliques bien posés, J. Anal. math., Jérusalem, t. 10, 1962-1963, p. 1-90. | Zbl | MR
[6]. - Ueber die Anfangswertaufgabe für die hydrodynamischen Grund-gleichungen, Math. Nachr., t. 4, 1951, p. 213-231. | Zbl | MR
[7]. - Das Anfangswertproblem im Grossen für eine Klasse nicht-linearer Wellengleichungen, Math. Z., t. 77, 1961, p. 295-308. | Zbl | MR | EuDML
[8]. - Hyperbolic differential equations. - Princeton, 1952 (multigraphié). | MR
[9]. - Équations différentielles opérationnelles. - Berlin, Springer, 1961. (Grundlehren der mathematischen Wissenschaften, 111). | Zbl | MR
[10]. - Quelques remarques sur les équations différentielles opérationnelles du 1er ordre, Rend. Semin. mat. Padova, t. 33, 1963, p. 213-225. | Zbl | Numdam
[11] et . - Problèmes aux limites non homogènes, III, Ann. Scuola Norm. Sup. Pisa, t. 15, 1961, p. 311-326. | Zbl | MR | Numdam
[12] et . - Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sc. Paris, t. 248, 1959, p. 3519-3521. | Zbl | MR
[13] et . - Sur certains problèmes hyperboliques non linéaires, C. R. Acad. Sc. Paris, t. 257, 1963, p. 3267-3270. | Zbl | MR
[14]. - Monotone (non-linear) operators in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. | Zbl | MR
[15]. - On a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sc. U. S. A., t. 50, 1963, p. 1038-1041. | Zbl | MR
[16]. - On embedding, extension and approximation of differentiable functions, Uspekhi Mat. Nauk., t. 16, 1961, p. 63-114. | Zbl | MR
[17]. - Soluzioni periodiche di equazioni a derivati parziali di tipo iperbolico non lineari, Annali di Mat. pura ed appl., t. 42, 1956, p. 25-49. | Zbl | MR
[18]. - Non-linear semigroups, Annals of Math., t. 78, 1963, p. 339-364. | Zbl | MR
[19]. - The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. math. France, t. 91, 1963, p. 129-135. | Zbl | MR | Numdam
[20]. - Second-order differential equations in Banach space, Soviet Math. (Doklady), t. 151, 1963, p. 1394-1398. | Zbl
[21]. - Un complemento ad un teorema di J.-L. Lions sulle equazioni differenziali astratte del secondo ordine (to appear). | Zbl | Numdam
[22]. - Strongly elliptic quasi-linear systems of differential equations in divergence form, Trudy Mosk. Mat. Obšč., t. 12, 1963, p. 125-184. | Zbl
[23]. - On the solution of boundary-value problems for quasi-linear parabolic equations of arbitrary order, Mat. Sbornik, t. 59, (101), 1962, p. 289-325.
[24]. - On the global solution of the Cauchy problem for some non-linear hyperbolic equations, Mem. Fac. Eng., Kyoto Univ., t. 24, 1962, p. 482-487.
[25]. - On the a priori estimate for solutions of the Cauchy problem for some non-linear wave equations, Kyoto math. J., t. 2, 1962, p. 55-60. | Zbl | MR
[26] and . - Mixed problem for some semi-linear wave equation, Kyoto math. J., t. 2, 1962, p. 61-78. | Zbl | MR
[27], (to appear).
Cité par Sources :







