Infinite dimensional oscillatory integrals with polynomial phase function and the trace formula for the heat semigroup
From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 327 (2009), pp. 17-45.
@incollection{AST_2009__327__17_0,
     author = {Albeverio, Sergio and Mazzucchi, Sonia},
     title = {Infinite dimensional oscillatory integrals with polynomial phase function and the trace formula for the heat semigroup},
     booktitle = {From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
     editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
     series = {Ast\'erisque},
     pages = {17--45},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {327},
     year = {2009},
     mrnumber = {2642350},
     zbl = {1208.28009},
     language = {en},
     url = {http://www.numdam.org/item/AST_2009__327__17_0/}
}
TY  - CHAP
AU  - Albeverio, Sergio
AU  - Mazzucchi, Sonia
TI  - Infinite dimensional oscillatory integrals with polynomial phase function and the trace formula for the heat semigroup
BT  - From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut
AU  - Collectif
ED  - Dai Xianzhe
ED  - Léandre Rémi
ED  - Xiaonan Ma
ED  - Zhang Weiping
T3  - Astérisque
PY  - 2009
SP  - 17
EP  - 45
IS  - 327
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2009__327__17_0/
LA  - en
ID  - AST_2009__327__17_0
ER  - 
%0 Book Section
%A Albeverio, Sergio
%A Mazzucchi, Sonia
%T Infinite dimensional oscillatory integrals with polynomial phase function and the trace formula for the heat semigroup
%B From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut
%A Collectif
%E Dai Xianzhe
%E Léandre Rémi
%E Xiaonan Ma
%E Zhang Weiping
%S Astérisque
%D 2009
%P 17-45
%N 327
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2009__327__17_0/
%G en
%F AST_2009__327__17_0
Albeverio, Sergio; Mazzucchi, Sonia. Infinite dimensional oscillatory integrals with polynomial phase function and the trace formula for the heat semigroup, in From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 327 (2009), pp. 17-45. http://www.numdam.org/item/AST_2009__327__17_0/

[1] S. Albeverio - "Wiener and Feynman path integrals and their applications", in Proceedings of the Norbert Wiener Centenary Congress (East Lansing, MI, 1994), 1994. | Zbl

[2] S. Albeverio & T. Arede - "The relation between quantum mechanics and classical mechanics: a survey of some mathematical aspects", in Chaotic Behavior in Quantum Systems, Theory and Applications (G. Casati et al., eds.), Plenum, 1985. | DOI

[3] S. Albeverio, T. Arede & M. D. Faria - "Remarks on nonlinear filtering problems: white noise representation and asymptotic expansions", in Stochastic processes, physics and geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, 1990, p. 77-86. | MR

[4] S. Albeverio, P. Blanchard & R. Høegh-Krohn - "Feynman path integrals and the trace formula for the Schrödinger operators", Comm. Math. Phys. 83 (1982), p. 49-76. | DOI | MR | Zbl

[5] S. Albeverio & Z. Brzeźniak - "Finite-dimensional approximation approach to oscillatory integrals and stationary phase in infinite dimensions", J. Funct. Anal. 113 (1993), p. 177-244. | DOI | MR | Zbl

[6] S. Albeverio & Z. Brzezniak,"Feynman path integrals as infinite-dimensional oscillatory integrals: some new developments", Acta Appl. Math. 35 (1994), p. 5-26. | DOI | MR | Zbl

[7] S. Albeverio, R. Høegh-Krohn & S. Mazzucchi - "Mathematical theory of Feynman path integrals-An introduction", second corrected and enlarged edition, Lecture Notes in Math., vol. 523, Springer, 2008. | MR | Zbl

[8] S. Albeverio & S. Mazzucchi - "Feynman path integrals for polynomially growing potentials", J. Funct Anal. 221 (2005), p. 83-121. | DOI | MR | Zbl

[9] S. Albeverio & S. Mazzucchi, "Generalized Fresnel integrals", Bull. Sci. Math. 129 (2005), p. 1-23. | DOI | MR | Zbl

[10] S. Albeverio & I. Mitoma - "Asymptotic expansion of perturbative Chern-Simons theory via Wiener space", Bull. Sci. Math. 133 (2009), p. 272-314. | DOI | MR | Zbl

[11] S. Albeverio, A. Boutet De Monvel-Berthier & Z. Brzeźniak - "Stationary phase method in infinite dimensions by finite-dimensional approximations: applications to the Schrödinger equation", Potential Anal. 4 (1995), p. 469-502. | DOI | MR | Zbl

[12] S. Albeverio, A. Boutet De Monvel-Berthier & Z. Rzeźniak, "The trace formula for Schrödinger operators from infinite-dimensional oscillatory integrals", Math. Nachr. 182 (1996), p. 21-65. | DOI | MR | Zbl

[13] S. Albeverio, H. Röckle & V. Steblovskaya - "Asymptotic expansions for Ornstein-Uhlenbeck semigroups perturbed by potentials over Banach spaces", Stochastics Stochastics Rep. 69 (2000), p. 195-238. | DOI | MR | Zbl

[14] S. Albeverio & V. Steblovskaya - "Asymptotics of infinite-dimensional integrals with respect to smooth measures. I", Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), p. 529-556. | DOI | MR | Zbl

[15] R. Azencott & H. Doss - "L'équation de Schrödinger quand h tend vers zéro: une approche probabiliste", in Stochastic aspects of classical and quantum systems (Marseille, 1983), Lecture Notes in Math., vol. 1109, Springer, 1985, p. 1-17. | DOI | MR | Zbl

[16] G. Ben Arous - "Methods de Laplace et de la phase stationnaire sur l'espace de Wiener", Stochastics 25 (1988), p. 125-153. | DOI | MR | Zbl

[17] G. Ben Arous & R. Léandre - "Décroissance exponentielle du noyau de la chaleur sur la diagonale. II", Probab. Theory Related Fields 90 (1991), p. 377-402. | DOI | MR | Zbl

[18] J.-M. Bismut - Large deviations and the Malliavin calculus, Progress in Math., vol. 45, Birkhäuser, 1984. | MR | Zbl

[19] R. H. Cameron - "A family of integrals serving to connect the Wiener and Feynman integrals", J. Math. and Phys. 39 (1960/1961), p. 126-140. | DOI | MR | Zbl

[20] Y. Colin De Verdière - "Singular Lagrangian manifolds and semiclassical analysis", Duke Math. J. 116 (2003), p. 263-298. | DOI | MR | Zbl

[21] R. S. Ellis & J. S. Rosen - "Asymptotic analysis of Gaussian integrals. II. Manifold of minimum points", Comm. Math. Phys. 82 (1981/82), p. 153-181. | DOI | MR | Zbl

[22] R. S. Ellis & J. S. Rosen, "Asymptotic analysis of Gaussian integrals. I. Isolated minimum points", Trans. Amer. Math. Soc. 273 (1982), p. 447-481. | DOI | MR | Zbl

[23] D. Elworthy & A. Truman - "Feynman maps, Cameron-Martin formulae and an-harmonic oscillators", Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), p. 115-142. | EuDML | Numdam | MR | Zbl

[24] L. Gross - "Abstract Wiener spaces", in Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif, 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, 1967, p. 31-42. | MR | Zbl

[25] M. C. Gutzwiller - Chaos in classical and quantum mechanics, Interdisciplinary Applied Mathematics, vol. 1, Springer, 1990. | MR | Zbl

[26] T. Hida, H. H. Kuo, J. Potthoff & L. Streit - White noise, Mathematics and its Applications, vol. 253, Kluwer Academic Publishers Group, 1993. | MR | Zbl

[27] L. Hörmander - The analysis of linear partial differential operators. I, Grund. Math. Wiss., vol. 256, Springer, 1983. | MR | Zbl

[28] G. W. Johnson & M. L. Lapidus - The Feynman integral and Feynman's operational calculus, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 2000. | MR | Zbl

[29] G. Kallianpur, D. Kannan & R. L. Karandikar - "Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula", Ann. Inst. H. Poincaré Probab. Statist. 21 (1985), p. 323-361. | EuDML | Numdam | MR | Zbl

[30] G. Kallianpur & H. Oodaira - "Freĭdlin-Wentzell type estimates for abstract Wiener spaces", Sankhyā Ser. A 40 (1978), p. 116-137. | MR | Zbl

[31] V. N. Kolokoltsov - Semiclassical analysis for diffusions and stochastic processes, Lecture Notes in Math., vol. 1724, Springer, 2000. | MR | Zbl

[32] H. H. Kuo - Gaussian measures in Banach spaces, Lecture Notes in Math., vol. 463, Springer, 1975. | MR | Zbl

[33] S. Lang - Complex analysis, fourth ed., Graduate Texts in Math., vol. 103, Springer, 1999. | MR | Zbl

[34] R. Léandre - "Applications quantitatives et géométriques du calcul de Malliavin", in Stochastic analysis (Paris, 1987), Lecture Notes in Math., vol. 1322, Springer, 1988, p. 109-133. | DOI | MR | Zbl

[35] V. P. Maslov - Théorie des perturbations et méthodes asymptotiques, Dunod, 1972. | Zbl

[36] S. Mazzucchi - Mathematical Feynman path integrals and their applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. | DOI | MR | Zbl

[37] E. Nelson - "Feynman integrals and the Schrödinger equation", J. Mathematical Phys. 5 (1964), p. 332-343. | DOI | MR | Zbl

[38] D. Nualart & V. Steblovskaya - "Asymptotics of oscillatory integrals with quadratic phase function on Wiener space", Stochastics Stochastics Rep. 66 (1999), p. 293-309. | DOI | MR | Zbl

[39] M. Pincus - "Gaussian processes and Hammerstein integral equations", Trans. Amer. Math. Soc. 134 (1968), p. 193-214. | DOI | MR | Zbl

[40] V. I. Piterbarg - Asymptotic methods in the theory of Gaussian processes and fields, Translations of Mathematical Monographs, vol. 148, Amer. Math. Soc., 1996. | MR | Zbl

[41] V. I. Piterbarg &V. R. Fatalov - "The Laplace method for probability measures in Banach spaces", Uspekhi Mat. Nauk 50 (1995), p. 57-150. | MR | Zbl

[42] M. Reed & B. Simon - Methods of modem mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, 1975. | MR

[43] S. Rossignol - "Développements asymptotiques d'intégrales de Laplace sur l'espace de Wiener dans le cas dégénéré", C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), p. 971-974. | MR | Zbl

[44] M. Schilder - "Some asymptotic formulas for Wiener integrals", Trans. Amer. Math. Soc. 125 (1966), p. 63-85. | DOI | MR | Zbl

[45] B. Simon - Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge Univ. Press, 1979. | MR | Zbl

[46] B. Simon, Functional integration and quantum physics, second ed., AMS Chelsea Publishing, Providence, RI, 2005. | MR | Zbl

[47] E. C. Tichmarsch - The theory of functions, Oxford Univ. Press, 1939. | MR

[48] T. J. Zastawniak - "Equivalence of Albeverio-Høegh-Krohn-Feynman integral for an-harmonic oscillators and the analytic Feynman integral", Univ. Iagel. Acta Math. 28 (1991), p. 187-199. | MR | Zbl