Résultats non-perturbatifs pour l'équation de Schrödinger et d'autres cocycles quasi-périodiques [d'après Avila, Bourgain, Jitomirskaya, Krikorian, Puig]
Séminaire Bourbaki Volume 2007/2008 Exposés 982-996, Astérisque, no. 326 (2009), Exposé no. 988, 21 p.
@incollection{AST_2009__326__197_0,
     author = {Eliasson, L. Hakan},
     title = {R\'esultats non-perturbatifs pour l'\'equation de {Schr\"odinger} et d'autres cocycles quasi-p\'eriodiques [d'apr\`es {Avila,} {Bourgain,} {Jitomirskaya,} {Krikorian,} {Puig]}},
     booktitle = {S\'eminaire Bourbaki Volume 2007/2008 Expos\'es 982-996},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:988},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {326},
     year = {2009},
     zbl = {1192.37009},
     mrnumber = {2605323},
     language = {fr},
     url = {http://www.numdam.org/item/AST_2009__326__197_0/}
}
TY  - CHAP
AU  - Eliasson, L. Hakan
TI  - Résultats non-perturbatifs pour l'équation de Schrödinger et d'autres cocycles quasi-périodiques [d'après Avila, Bourgain, Jitomirskaya, Krikorian, Puig]
BT  - Séminaire Bourbaki Volume 2007/2008 Exposés 982-996
AU  - Collectif
T3  - Astérisque
N1  - talk:988
PY  - 2009
DA  - 2009///
IS  - 326
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2009__326__197_0/
UR  - https://zbmath.org/?q=an%3A1192.37009
UR  - https://www.ams.org/mathscinet-getitem?mr=2605323
LA  - fr
ID  - AST_2009__326__197_0
ER  - 
Eliasson, L. Hakan. Résultats non-perturbatifs pour l'équation de Schrödinger et d'autres cocycles quasi-périodiques [d'après Avila, Bourgain, Jitomirskaya, Krikorian, Puig], dans Séminaire Bourbaki Volume 2007/2008 Exposés 982-996, Astérisque, no. 326 (2009), Exposé no. 988, 21 p. http://www.numdam.org/item/AST_2009__326__197_0/

[1] C. Albanese - KAM theory in momentum space and quasiperiodic Schrödinger operators, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), p. 1-97. | Article | EuDML 78297 | Numdam | MR 1212629 | Zbl 0794.47002

[2] S. Aubry & G. André - Analyticity breaking and Anderson localization in incommensurate lattices, in Group theoretical methods in physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979), Ann. Israel Phys. Soc., vol. 3, Hilger, 1980, p. 133-164. | MR 626837 | Zbl 0943.82510

[3] A. Avila, J. Bochi & D. Damanik - Cantor spectrum for Schrödinger operators with potential arising from generalized skew-shifts, prépublication arXiv:0709.2667. | Article | MR 2477761 | Zbl 1165.37012

[4] A. Avila & S. Y. Jitomirskaya - The ten Martini problem, prépublication arXiv:math/0503363. | Article | MR 2521117 | Zbl 1166.47031

[5] A. Avila & R. Krikorian - Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. 164 (2006), p. 911-940. | Article | MR 2259248 | Zbl 1138.47033

[6] J. Bourgain - Hölder regularity of integrated density of states for the almost Mathieu operator in a perturbative regime, Lett. Math. Phys. 51 (2000), p. 83-118. | Article | MR 1774640 | Zbl 0960.34071

[7] J. Bourgain - On the spectrum of lattice Schrödinger operators with deterministic potential. II, J. Anal. Math. 88 (2002), p. 221-254. | Article | MR 1984594 | Zbl 1058.47002

[8] J. Bourgain - Green's function estimates for lattice Schrödinger operators and applications, Annals of Mathematical Studies, Princeton Univ. Press., 2004. | MR 2100420 | Zbl 1137.35001

[9] J. Bourgain & S. Y. Jitomirskaya - Absolutely continuous spectrum for 1D quasiperiodic operators, Invent. Math. 148 (2002), p. 453-463. | Article | MR 1908056 | Zbl 1036.47019

[10] J. Bourgain & S. Y. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Statist. Phys. 108 (2002), p. 1203-1218. | Article | MR 1933451 | Zbl 1039.81019

[11] C. Chavaudret - Reducibility of quasi-periodic cocycles in linear Lie groups, manuscrit, 2008. | Zbl 1222.37007

[12] V. A. Chulaevsky & E. I. Dinaburg - Methods of KAM-theory for long-range quasi-periodic operators on 𝐙 ν . Pure point spectrum, Comm. Math. Phys. 153 (1993), p. 559-577. | Article | MR 1218932 | Zbl 0780.58036

[13] P. Deift & B. Simon - Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension, Comm. Math. Phys. 90 (1983), p. 389-411. | Article | MR 719297 | Zbl 0562.35026

[14] E. I. Dinaburg & Y. G. Sinaĭ - The one-dimensional Schrödinger equation with quasiperiodic potential, Funkcional. Anal, i Prilozen. 9 (1975), p. 8-21. | MR 470318 | Zbl 0333.34014

[15] L. H. Eliasson - Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa CI. Sci. 15 (1988), p. 115-147. | EuDML 84022 | Numdam | MR 1001032 | Zbl 0685.58024

[16] L. H. Eliasson -, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys. 146 (1992), p. 447-482. | Article | MR 1167299 | Zbl 0753.34055

[17] L. H. Eliasson -, Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum, Acta Math. 179 (1997), p. 153-196. | Article | MR 1607554 | Zbl 0908.34072

[18] L. H. Eliasson -, Almost reducibility of linear quasi-periodic systems, in Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., 2001, p. 679-705. | Article | MR 1858550 | Zbl 1015.34028

[19] L. H. Eliasson -, Ergodic skew-systems on 𝕋 d × SO ( 3 , ) , Ergodic Theory Dynam. Systems 22 (2002), p. 1429-1449. | Article | MR 1934143 | Zbl 1015.37003

[20] R. Fabbri & R. A. Johnson - Genericity of exponential dichotomy for two-dimensional differential systems, Ann. Mat. Pura Appl. 178 (2000), p. 175-193. | Article | MR 1849385 | Zbl 1037.34043

[21] A. Fedotov & F. Klopp - Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case, Comm. Math. Phys. 227 (2002), p. 1-92. | Article | MR 1903839 | Zbl 1004.81008

[22] J. Fröhlich, T. Spencer & P. Wittwer - Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys. 132 (1990), p. 5-25. | Article | MR 1069198 | Zbl 0722.34070

[23] A. Y. Gordon - The point spectrum of the one-dimensional Schrödinger operator, Uspehi Mat. Nauk 31 (1976), p. 257-258. | MR 458247 | Zbl 0342.34012

[24] A. Y. Gordon, S. Y. Jitomirskaya, Y. Last & B. Simon - Duality and singular continuous spectrum in the almost Mathieu equation, Acta Math. 178 (1997), p. 169-183. | Article | MR 1459260 | Zbl 0897.34074

[25] S. Hadj Amor - Sur la densité d'état de l'opérateur de Schrödinger quasipériodique unidimensionnel, C. R. Math. Acad. Sci. Paris 343 (2006), p. 423-426. | Article | MR 2259884 | Zbl 1108.47032

[26] H. He & J. You - Full measure reducibility of generic one-parameter family of quasi-periodic linear systems, manuscrit, 2006. | Zbl 1166.34019

[27] B. Helffer & J. Sjöstrand - Semiclassical analysis for Harper's equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) 39 (1989), p. 1-124. | EuDML 94884 | Numdam | MR 1041490 | Zbl 0725.34099

[28] M.-R. Herman - Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.É.S. 49 (1979), p. 5-233. | Article | EuDML 103958 | Numdam | MR 538680 | Zbl 0448.58019

[29] M.-R. Herman -, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2, Comment. Math. Helv. 58 (1983), p. 453-502. | Article | EuDML 139950 | MR 727713 | Zbl 0554.58034

[30] S. Y. Jitomirskaya - Metal-insulator transition for the almost Mathieu operator, Ann. of Math. 150 (1999), p. 1159-1175. | Article | EuDML 120545 | MR 1740982 | Zbl 0946.47018

[31] R. A. Johnson - Analyticity of spectral subbundles, J. Differential Equations 35 (1980), p. 366-387. | Article | MR 563387 | Zbl 0458.34017

[32] R. A. Johnson & J. Moser - The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982), p. 403-438. | Article | MR 667409 | Zbl 0497.35026

[33] R. A. Johnson & G. R. Sell - Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems, J. Differential Equations 41 (1981), p. 262-288. | Article | MR 630994 | Zbl 0443.34037

[34] À. Jorba & C. Simó - On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations 98 (1992), p. 111-124. | Article | MR 1168974 | Zbl 0761.34026

[35] R. Krikorian - C 0 -densité globale des systèmes produits-croisés sur le cercle réductibles, Ergodic Theory Dynam. Systems 19 (1999), p. 61-100. | Article | MR 1676934 | Zbl 0963.37016

[36] R. Krikorian -, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque 259 (1999). | Numdam | MR 1732061 | Zbl 0957.37016

[37] R. Krikorian -, Réductibilité presque partout des flots fibres quasi-périodiques à valeurs dans des groupes compacts, Ann. Sci. Ecole Norm. Sup. 32 (1999), p. 187-240. | Article | EuDML 82488 | Numdam | MR 1681809 | Zbl 1098.37510

[38] R. Krikorian -, Global density of reducible quasi-periodic cocycles on 𝐓 1 × SU ( 2 ) , Ann. of Math. 154 (2001), p. 269-326. | Article | MR 1865972 | Zbl 1030.37003

[39] R. Krikorian -, Reducibility, differentiable rigidity and Lyapunov exponents for quasiperiodic cocycles on 𝕋 × S L ( 2 , ) , prépublication arXiv:math/0402333.

[40] R. Mañé - Ergodic theory and differentiable dynamics, Ergebnisse Math. Grenzg. (3), vol. 8, Springer, 1987. | MR 889254 | Zbl 0616.28007

[41] J. Moser - Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), p. 136-176. | Article | EuDML 161513 | MR 208078 | Zbl 0149.29903

[42] J. Moser & J. Pöschel - An extension of a result by Dinaburg and Sinaĭ on quasiperiodic potentials, Comment. Math. Helv. 59 (1984), p. 39-85. | Article | EuDML 139964 | MR 743943 | Zbl 0533.34023

[43] M. G. Nerurkar - On the construction of smooth ergodic skew-products, Ergodic Theory Dynam. Systems 8 (1988), p. 311-326. | Article | MR 951272 | Zbl 0662.58028

[44] V. I. Oseledec - A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), p. 179- 210. | MR 240280 | Zbl 0236.93034

[45] L. Pastur & A. Figotin - Spectra of random and almost-periodic operators, Grund. Math. Wiss., vol. 297, Springer, 1992. | MR 1223779 | Zbl 0752.47002

[46] J. Puig - Cantor spectrum for the almost Mathieu operator, Comm. Math. Phys. 244 (2004), p. 297-309. | Article | MR 2031032 | Zbl 1075.39021

[47] J. Puig -, A nonperturbative Eliasson's reducibility theorem, Nonlinearity 19 (2006), p. 355-376. | Article | MR 2199393 | Zbl 1104.47037

[48] M. Rychlik - Renormalization of cocycles and linear ODE with almost-periodic coefficients, Invent. Math. 110 (1992), p. 173-206. | Article | EuDML 144048 | MR 1181822 | Zbl 0771.58013

[49] B. Simon - Kotani theory for one-dimensional stochastic Jacobi matrices, Comm. Math. Phys. 89 (1983), p. 227-234. | Article | MR 709464 | Zbl 0534.60057

[50] Y. G. Sinaĭ - Structure of the spectrum of a Schrödinger difference operator with almost periodic potential near the left boundary, Funktsional. Anal, i Prilozhen. 19 (1985), p. 42-48, 96. | MR 783705 | Zbl 0574.39004

[51] Y. G. Sinaĭ -, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys. 46 (1987), p. 861-909. | Article | MR 893122 | Zbl 0682.34023