Compact sets with vanishing cohomology in Stein spaces and domains of holomorphy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 3, pp. 665-685.

Let X be a Stein space. We study compact subsets K of X that are structurally acyclic, i.e., H i (K,𝒪 X )=0, for all i1. We show i) that such compact sets are natural in the sense that the canonical map from K into K ˜, the spectrum of the complex algebra Γ(K,𝒪 X ), is bijective, and ii) that the set of interior points of K is a domain of holomorphy in X. Motivated by this we give an extensive account of examples of domains of holomorphy in non-normal Stein spaces and prove several properties, like hereditarity via the normalization map. Finally, a straightforward criterion of non-acyclicity is given in terms of general Hartogs figures.

Published online:
Classification: 32D05, 32C35, 32E10, 32C15
@article{ASNSP_2013_5_12_3_665_0,
     author = {V\^aj\^aitu, Viorel},
     title = {Compact sets with vanishing cohomology in {Stein} spaces and domains of holomorphy},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {665--685},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {3},
     year = {2013},
     zbl = {1278.32010},
     mrnumber = {3137459},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_3_665_0/}
}
TY  - JOUR
AU  - Vâjâitu, Viorel
TI  - Compact sets with vanishing cohomology in Stein spaces and domains of holomorphy
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2013
SP  - 665
EP  - 685
VL  - 12
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2013_5_12_3_665_0/
LA  - en
ID  - ASNSP_2013_5_12_3_665_0
ER  - 
%0 Journal Article
%A Vâjâitu, Viorel
%T Compact sets with vanishing cohomology in Stein spaces and domains of holomorphy
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 665-685
%V 12
%N 3
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2013_5_12_3_665_0/
%G en
%F ASNSP_2013_5_12_3_665_0
Vâjâitu, Viorel. Compact sets with vanishing cohomology in Stein spaces and domains of holomorphy. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 3, pp. 665-685. http://www.numdam.org/item/ASNSP_2013_5_12_3_665_0/

[1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259. | EuDML | Numdam | MR | Zbl

[2] A. Andreotti and F. Norguet, Probléme de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 187–241. | EuDML | Numdam | MR | Zbl

[3] A. Andreotti and Y.-T. Siu, Projective embedding of pseudoconcave spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 231–278. | EuDML | Numdam | MR | Zbl

[4] C. Bănică and O. Stănăşilă, Some results on the extension of analytic entities defined out of a compact, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 347–376. | EuDML | Numdam | MR | Zbl

[5] F.-T. Birtel, Some holomorphic function algebras, In: “Summer Gathering on Function Algebras” (Aarhus, 1969), Matematisk Inst., Aarhus Univ., Aarhus, 1969, 11–18. | MR | Zbl

[6] F.-T. Birtel, “Algebras of Holomorphic Functions: 40 Lectures”, Tulane University Mathematics Department, New Orleans, 1972. | Zbl

[7] J.-E. Björk, Holomorphic convexity and analytic structures in Banach algebras, Ark. Mat. 9 (1971), 39–54. | MR | Zbl

[8] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77–99. | EuDML | Numdam | MR | Zbl

[9] M. Colţoiu and K. Diederich, On Levi’s problem on complex spaces and envelopes of holomorphy, Math. Ann. 316 (2000), 185–199. | MR | Zbl

[10] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94–123. | EuDML | MR | Zbl

[11] G. Fischer, “Complex Analytic Geometry”, Lecture Notes in Math., Vol. 538, Springer–Verlag, Berlin, New York, 1976. | MR | Zbl

[12] J.-E. Fornæss and R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47–72. | EuDML | MR | Zbl

[13] M. Furushima, Domains of holomorphy in two dimensional normal Stein spaces, In: “Finite or Infinite Dimensional Complex Analysis and Applications”, Kyushu University Press, Fukuoka, 2005, 67–74. | MR | Zbl

[14] H. Grauert and R. Remmert, Konvexität in der komplexen Analysis. Nich-holomorph-konvexe Holomorphiegebiete und Andwendungen auf die Abbildungstheorie, Comm. Math. Helv. 31 (1956), 152–183. | EuDML | MR | Zbl

[15] H. Grauert and R. Remmert, Singularitäten komplexer Mannigfaltigkeiten une Riemannsche Gebiete, Math. Z. 67 (1957), 103–128. | EuDML | MR | Zbl

[16] H. Grauert and R. Remmert, “Theorie der Steinschen Räume”, Grundlehren der math. Wiss., Vol. 227, Springer-Verlag, 1977. | MR | Zbl

[17] R. Harvey, The theory of hyperfunctions on totally real subsets of a complex manifold with applications to extension problems, Amer. J. Math. 91 (1969), 853–873. | MR | Zbl

[18] R. Harvey and R.-O. Wells, Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc. 136 (1969), 509–516. | MR | Zbl

[19] A. Hirschowitz, Un example concernant le prolongement analytique, C.R. Acad. Sci. Paris, Sér. A 275 (1972), 1231–1233. | MR | Zbl

[20] R. Iwahashi, A characterization of holomorphically complete spaces, Proc. Japan Acad. 36 (1960), 205–206. | MR | Zbl

[21] R. Iwahashi, Domains spread on a complex space, J. Math. Soc. Japan 9 (1957), 452–463. | MR | Zbl

[22] B. Kaup and L. Kaup, “Holomorphic Functions of Several Variables”, an introduction to the fundamental theory, with the assistance of Gottfried Barthel, translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics, 3, Berlin, 1983. | MR | Zbl

[23] H. Laufer, Some remarks about a theorem of Hartogs, Proc. Amer. Math. Soc. 17 (1966), 1244–1249. | MR | Zbl

[24] H. Laufer, On the infinite dimensionality of the Dolbeault cohomology groups, Proc. Amer. Math. Soc. 52 (1975), 293–296. | MR | Zbl

[25] C. Laurent–Thiébaut, Sur l’équation de Cauchy–Riemann tangentielle dans une calotte strictement pseudoconvexe, Internat. J. Math. 16 (2005), 1063–1079. | MR | Zbl

[26] G. Lupacciolu, On the envelopes of holomorphy of strictly Levi convex hypersurfqces, In: “Colloque d’Analyse Complexe et Géometrie”, Marseille, France 13-17 janvier 1992, Astérisque, Vol. 217 (1993), 183–192. | MR | Zbl

[27] G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat. 32 (1994), 455–473. | MR | Zbl

[28] A. Martineau, Les hyperfunctions de M. Sato, In: “Séminaire Bourbaki”, Vol. 6, Exp. No. 214, Soc. Math. France, Paris, 1995, 127–139. | EuDML | Numdam | MR | Zbl

[29] G. Nardelli and A. Tancredi, Compatti olomorficamente convessi di uno spazio analitico, Ann. Univ. Ferrara, Sez. VII (N.S.) 25 (1979), 99–108. | MR | Zbl

[30] P.-J. de Paepe, Homomorphism spaces of algebras of holomorphic functions, Pac. J. Math. 66 (1976), 211–220. | MR | Zbl

[31] H. Rossi, On envelopes of holomorphy, Comm. Pure Appl. Math. 16 (1963), 9–17. | MR | Zbl

[32] G. Scheja, Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung, Math. Ann. 157 (1964), 75–94. | EuDML | MR | Zbl

[33] H.-W. Schuster, Infinitesimale Erweiterungen komplexer Räume, Comm. Math. Helv. 45 (1970), 265–286. | EuDML | MR | Zbl

[34] Y.-T. Siu and G. Trautmann, “Gap Sheaves and Extension of Coherent Analytic Subsheaves”, Lect. Notes in Math., Vol. 172, Springer-Verlag, Berlin, 1976. | MR | Zbl

[35] B. Stensones, Stein neighborhoods, Math. Z. 195 (1987), 433–436. | EuDML | MR | Zbl

[36] O. Stormark, Some properties of compact natural sets in several complex variables, Math. Scand. 33 (1973), 359–374. | EuDML | MR | Zbl

[37] T. Ueda, Domains of holomorphy in Segre cones, Publ. Res. Inst. Math. Sci. 22 (1986), 561–569. | MR | Zbl

[38] V. Vâjâitu, Invariance of cohomological q-completeness under finite holomorphic surjections, Manuscr. Math. 82 (1994), 113–124. | EuDML | MR | Zbl

[39] V. Vâjâitu, Holomorphic q-hulls in top degrees, Manuscr. Math. 91 (1996), 195–210. | EuDML | MR | Zbl

[40] V. Vâjâitu, Neighborhoods of Levi q-convex domains, J. Geom. Anal. 8 (1998), 163–177. | MR | Zbl

[41] W.-R. Zame, Holomorphic convexity of compact sets in analytic spaces and the structure of algebras of holomorphic germs, Trans. Amer. Math. Soc. 222 (1976), 107–127. | MR | Zbl