We investigate geometric curvature energies on closed curves involving integral versions of the Menger curvature. In particular, we prove geometric variants of Morrey-Sobolev and Morrey-space imbedding theorems, which may be viewed as counterparts to respective results on one-dimensional sets in the context of harmonic analysis.
Strzelecki, Paweł 1 ; Szumańska, Marta 2 ; von der Mosel, Heiko 3
@article{ASNSP_2010_5_9_1_145_0,
author = {Strzelecki, Pawe{\l} and Szuma\'nska, Marta and von der Mosel, Heiko},
title = {Regularizing and self-avoidance effects of integral {Menger} curvature},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {145--187},
year = {2010},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 9},
number = {1},
mrnumber = {2668877},
zbl = {1193.28007},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/}
}
TY - JOUR AU - Strzelecki, Paweł AU - Szumańska, Marta AU - von der Mosel, Heiko TI - Regularizing and self-avoidance effects of integral Menger curvature JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 145 EP - 187 VL - 9 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/ LA - en ID - ASNSP_2010_5_9_1_145_0 ER -
%0 Journal Article %A Strzelecki, Paweł %A Szumańska, Marta %A von der Mosel, Heiko %T Regularizing and self-avoidance effects of integral Menger curvature %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 145-187 %V 9 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/ %G en %F ASNSP_2010_5_9_1_145_0
Strzelecki, Paweł; Szumańska, Marta; von der Mosel, Heiko. Regularizing and self-avoidance effects of integral Menger curvature. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 145-187. https://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/
[1] , , and , Self-contact sets for 50 tightly knotted and linked tubes, arXiv:math.DG/0508248 v1 (2005).
[2] , , and , Self-interactions of strands and sheets, J. Stat. Phys. 110 (2003), 35–50. | MR | Zbl
[3] and , “Studies in Geometry”, Freeman and co., San Francisco, CA, 1970. | MR | Zbl
[4] , , , and , Criticality for the Gehring link problem, Geom. Topol. 10 (2006), 2055–2116. | MR | Zbl
[5] , and , On the minimum ropelength of knots and links, Invent. Math. 150 (2002), 257–286. | MR | Zbl
[6] , and , Visualizing the tightening of knots, In: “VIS’05: Proc. of the 16th IEEE Visualization 2005”, IEEE Computer Society, Washington, DC, 2005, 575–582.
[7] , , and , Biarcs, global radius of curvature, and the computation of ideal knot shapes, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.) Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 75–108. | MR | Zbl
[8] and , “Introduction to Knot Theory”, Springer, New York, 1977. (Reprint of the 1963 original, Graduate Texts in Mathematics, Vol. 57.) | MR | Zbl
[9] and , “Singular Integrals and Rectifiable Sets in : Au-delà des graphes lipschitziens”, Astériques 193, Soc. Mathématique France, Montrouge, 1991. | Zbl | Numdam
[10] , and , Möbius energy of knots and unknots, Ann. of Math. 139 (1994), 1–50. | MR | Zbl
[11] and , Existence of ideal knots in , in preparation.
[12] and , What are the longest ropes on the unit sphere? Preprint Nr. 32, Institut für Mathematik, RWTH Aachen University (2009); see http://www.instmath.rwth-aachen.de/~heiko/veroeffentlichungen/longest_ropes.pdf. | MR | Zbl
[13] and , Existence of ideal knots, J. Knot Theory Ramifications 12 (2003), 123–133. | MR | Zbl
[14] and , Global curvature, thickness, and the ideal shape of knots, Proc. Natl. Acad. Sci. USA 96 (1999), 4769–4773. | MR | Zbl
[15] , , and , Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations 14 (2002), 29–68. | MR | Zbl
[16] , Menger curvature and Lipschitz parametrizations in metric spaces, Fund. Math. 185 (2005), 143–169. | MR | EuDML | Zbl
[17] , Curvature integral and Lipschitz parametrization in -regular metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 99–123. | MR | EuDML | Zbl
[18] , Menger curvature and rectifiability, Ann. of Math. 149 (1999), 831–869. | MR | EuDML | Zbl
[19] and , High-dimensional Menger-type curvatures – Part I: Geometric multipoles and multiscale inequalities, arXiv:0805.1425v1 (2008), to appear in Rev. Mat. Iberoamericana. | MR | Zbl
[20] and , High-dimensional Menger-type curvatures – Part II: -Separation and a menagerie of curvatures, Constr. Approx. 30 (2009), 325–360. | MR | Zbl
[21] and , Menger curvature and -regularity of fractals, Proc. Amer. Math. Soc. 129 (2000), 1755–1762. | MR | Zbl
[22] , Rectifiability, analytic capacity, and singular integrals, In: “Proc. ICM”, Vol. II, Berlin 1998, Doc. Math. 1998, Extra Vol. II, 657–664 (electronic). | MR | EuDML | Zbl
[23] , Search for geometric criteria for removable sets of bounded analytic functions, Cubo 6 (2004), 113–132. | MR | Zbl
[24] , Analytic capacity: discrete approach and curvature of measure, Sb. Mat. 186 (1995), 827–846. | Zbl
[25] and , A geometric proof of the boundedness of the Cauchy integral on Lipschitz curves, Int. Math. Res. Not. 7 (1995), 325–331. | MR | Zbl
[26] , Untersuchungen über allgemeine Metrik. Vierte Untersuchung, Zur Metrik der Kurven, Math. Ann. 103 (1930), 466–501. | MR | EuDML | JFM
[27] , “Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral”, Springer Lecture Notes, Vol. 1799, Springer Berlin, Heidelberg, New York, 2002. | MR | Zbl
[28] , Ahlfors-regular curves in metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 437–460. | MR | Zbl
[29] and , Global curvature for rectifiable loops, Math. Z. 243 (2003), 37–77. | MR | Zbl
[30] and , Euler-Lagrange equations for nonlinearly elastic rods with self-contact, Arch. Ration. Mech. Anal. 168 (2003), 35–82. | MR | Zbl
[31] and , Characterization of ideal knots, Calc. Var. Partial Differential Equations 19 (2004), 281–305. | MR | Zbl
[32] , and , A geometric curvature double integral of Menger type for space curves Ann. Acad. Sci. Fenn. Math. 34 (2009), 195–214. | MR | Zbl
[33] and , On a mathematical model for thick surfaces, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.), Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 547–564. | MR | Zbl
[34] and , Global curvature for surfaces and area minimization under a thickness constraint, Calc. Var. Partial Differential Equations 25 (2006), 431–467. | MR | Zbl
[35] and , On rectifiable curves with -bounds on global curvature: Self-avoidance, regularity, and minimizing knots, Math. Z. 257 (2007), 107–130. | MR | Zbl
[36] and , Integral Menger curvature for surfaces, arXiv:math.CA/0911.2095 v2 (2009). | MR | Zbl
[37] , The boundedness of the Cauchy integral and Menger curvature, In: “Harmonic Analysis and Boundary Value Problems”, Contemp. Math. 277, AMS, Providence, RI, 2001, 139–158. | MR | Zbl






