We study the so-called -superparabolic functions, which are defined as lower semicontinuous supersolutions of a quasilinear parabolic equation. In the linear case, when , we have supercaloric functions and the heat equation. We show that the -superparabolic functions have a spatial Sobolev gradient and a sharp summability exponent is given.
@article{ASNSP_2005_5_4_1_59_0, author = {Kinnunen, Juha and Lindqvist, Peter}, title = {Summability of semicontinuous supersolutions to a quasilinear parabolic equation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {59--78}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {1}, year = {2005}, zbl = {1107.35070}, mrnumber = {2165403}, language = {en}, url = {www.numdam.org/item/ASNSP_2005_5_4_1_59_0/} }
Kinnunen, Juha; Lindqvist, Peter. Summability of semicontinuous supersolutions to a quasilinear parabolic equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 59-78. http://www.numdam.org/item/ASNSP_2005_5_4_1_59_0/
[1] Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25 (1967), 81-122. | MR 244638 | Zbl 0154.12001
and ,[2] On selfsimilar motions of compressible fluids in a porous medium (in Russian), Prikl. Mat. Mekh. 16 (1952), 679-698. | MR 52948 | Zbl 0047.19204
,[3] “Degenerate Parabolic Equations”, Springer-Verlag, Berlin-Heidelberg-New York, 1993. | MR 1230384 | Zbl 0794.35090
,[4] Current issues on sigular and degenerate evolution equations, in: “Handbook of Differential Equations”, C. Dafermos and E. Feireisl (eds.) in press, Elsevier Publ. | Zbl 1082.35002
, and ,[5] On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), 699-717. | MR 1871417 | Zbl 0997.35022
, and ,[6] Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl. (4) to appear. | MR 2231032
and ,[7] On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM. J. Math. Anal. 27 (1996), 661-683. | MR 1382827 | Zbl 0857.35071
and ,[8] Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591-613. | Numdam | MR 1205885 | Zbl 0797.35052
and ,[9] “Linear and Quasilinear Equations of Parabolic Type”, AMS, Providence R. I., 1968.
, and ,[10] On the definition and properties of -superharmonic functions, J. Reine Angew. Math. 365 (1986), 67-79. | MR 826152 | Zbl 0572.31004
,[11] “Second Order Parabolic Equations”, World Scientific, Singapore, 1996. | MR 1465184 | Zbl 0884.35001
,[12] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. | MR 159139 | Zbl 0149.06902
,[13] Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231-236. | MR 203268 | Zbl 0149.07001
,[14] Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205-226. | MR 226168 | Zbl 0159.39303
,[15] Green functions, potentials, and the Dirichlet problem for the heat equation, Proc. London Math. Soc. 33 (1976), 251-298. | MR 425145 | Zbl 0336.35046
,[16] Corrigendum, Proc. London Math. Soc. 37 (1977), 32-34. | MR 499239 | Zbl 0388.35030
,[17] “Nonlinear Diffusion Equations”, World Scientific, Singapore, 2001. | MR 1881297 | Zbl 0997.35001
, , and ,