@article{ASNSP_1993_4_20_4_483_0, author = {Bouchitt\'e, Guy and Dal Maso, Gianni}, title = {Integral representation and relaxation of convex local functionals on $BV(\Omega )$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {483--533}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 20}, number = {4}, year = {1993}, zbl = {0802.49008}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1993_4_20_4_483_0/} }
TY - JOUR AU - Bouchitté, Guy AU - Dal Maso, Gianni TI - Integral representation and relaxation of convex local functionals on $BV(\Omega )$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1993 SP - 483 EP - 533 VL - 20 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1993_4_20_4_483_0/ LA - en ID - ASNSP_1993_4_20_4_483_0 ER -
%0 Journal Article %A Bouchitté, Guy %A Dal Maso, Gianni %T Integral representation and relaxation of convex local functionals on $BV(\Omega )$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1993 %P 483-533 %V 20 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1993_4_20_4_483_0/ %G en %F ASNSP_1993_4_20_4_483_0
Bouchitté, Guy; Dal Maso, Gianni. Integral representation and relaxation of convex local functionals on $BV(\Omega )$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 20 (1993) no. 4, pp. 483-533. http://www.numdam.org/item/ASNSP_1993_4_20_4_483_0/
[1] Rank one properties for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A, to appear. | MR | Zbl
,[2] Integral representation of functionals defined on Sobolev spaces. Composite media and homogenization theory, 1-12 Birkhäuser, Boston, 1991. | MR | Zbl
- ,[3] Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl.(4) 135 (1983), 293-318. | MR | Zbl
,[4] Traces of bounded vectorfields and the divergence theorem. Preprint Univ. Trento, 1983. | MR
,[5] Variational convergence for functions and operators. Pitman, London, 1984. | MR | Zbl
,[6] Représentation intégrale de fonctionelles convexes sur un espace de mesures. II. Cas de l'épi-convergence. Ann. Univ. Ferrara Sez. VII (N.S.) 33 (1987), 113-156. | MR | Zbl
,[7] Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988), 398-420. | MR | Zbl
- ,[8] Semicontinuity, relaxation and integral representation problems in the calculus of variations. Pitman Res. Notes in Math., Longman, Harlow, 1989. | Zbl
,[9] Γ-limits of integral functionals. J. Analyse Math. 37 (1980), 145-185. | Zbl
- ,[10] Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985), 515-532. | MR | Zbl
- ,[11] Functionals defined on measures and applications to non equi-uniformly elliptic problems. Ann. Mat. Pura Appl. (4) 159 (1991), 133-149. | MR | Zbl
- ,[12] Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. (4) 122 (1979), 1-60. | Zbl
- ,[13] Γ-convergenza di integrali non negativi maggiorati da funzionali del tipo dell'area. Ann. Univ. Ferrara Sez. VII (N.S.) 24 (1978), 51-64. | Zbl
- ,[14] Convex analysis and measurable multifunctions. Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977. | MR | Zbl
- ,[15] Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscripta Math. 30 (1980), 387-416. | Zbl
,[16] A general theory of variational functionals. Topics in functional analysis (1980-1981), 149-221, Quaderni Scuola Norm. Sup. Pisa, Pisa, 1981. | MR | Zbl
- ,[17] Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend. Mat (6) 8 (1975), 277-294. | MR | Zbl
,[18] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850, and Rend. Sem. Mat. Brescia 3 (1979), 63-101. | MR | Zbl
- ,[19] Linear operators. Interscience, New York, 1957. | Zbl
- ,[20] Convex analysis and variational problems. North-Holland, Amsterdam, 1976. | MR | Zbl
- ,[21] Necessary and sufficient conditions for the lower semicontinuity of certain integral functionals. Ann. Univ. Ferrara Sez. VII (N.S.), 34 (1988), 219-236. | MR | Zbl
,[22] Functionals with linear growth in the calculus of variations. I. Comment. Math. Univ. Carolin. 20 (1979), 143-156. | MR | Zbl
- - ,[23] Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984. | MR | Zbl
,[24] Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159-178. | MR | Zbl
, ,[25] Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980), 241-257. | MR | Zbl
- ,[26] Sobolev spaces. Springer-Verlag, Berlin, 1985. | MR | Zbl
,[27] Convex Analysis. Princeton University Press, Princeton, 1970. | MR | Zbl
,[28] Convex integral functionals and duality. Contributions to Nonlinear Functional Analysis, 215-236. Academic Press, New York, 1971. | MR | Zbl
,[29] Conjugate duality and optimization. CBMS-NSF Regional Conf. Ser. in Appl. Math. 16, SIAM, Philadelphia, 1974. | MR | Zbl
,[30] Su alcune applicazioni di un tipo di convergenza variazionale. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 2 (1975), 617-638. | Numdam | MR | Zbl
,[31] On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961), 139-167. | MR | Zbl
,[32] Lectures on geometric measure theory. Proc. of the Centre for Mathematical Analysis (Canberra), Australian National University, 3, 1983. | MR | Zbl
,[33] Problèmes mathematiques en plasticité. Gauthier-Villars, Paris, 1983. | MR | Zbl
,[34] Multi-applications measurables à valeurs convexes compactes. J. Math. Pures Appl. 50 (1971), 265-297. | MR | Zbl
,[35] Analysis in classes of discontinuous functions and equations of mathematical physics. Martinus Nijhoff Publishers, Dordrecht, 1985. | MR | Zbl
- ,