@article{ASNSP_1987_4_14_3_465_0, author = {Attouch, H. and Buttazzo, G.}, title = {Homogenization of reinforced periodic one-codimensional structures}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {465--484}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 14}, number = {3}, year = {1987}, mrnumber = {951229}, zbl = {0654.73017}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/} }
TY - JOUR AU - Attouch, H. AU - Buttazzo, G. TI - Homogenization of reinforced periodic one-codimensional structures JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1987 SP - 465 EP - 484 VL - 14 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/ LA - en ID - ASNSP_1987_4_14_3_465_0 ER -
%0 Journal Article %A Attouch, H. %A Buttazzo, G. %T Homogenization of reinforced periodic one-codimensional structures %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1987 %P 465-484 %V 14 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/ %G en %F ASNSP_1987_4_14_3_465_0
Attouch, H.; Buttazzo, G. Homogenization of reinforced periodic one-codimensional structures. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 14 (1987) no. 3, pp. 465-484. http://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/
[1] Variational Convergence for Functions and Operators. Pitman, Appl. Math. Ser., Boston (1984). | MR | Zbl
,[2] Homogénéisation primale et duale par epi-convergence. Applications à l'élasticité. Publications A V AMAC 84-06, Université de Perpignan, Perpignan (1984).
,[3] Averaged processes in periodic media. Moscow, Nauka 1984 (in russian). | Zbl
- ,[4] Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | MR | Zbl
- - ,[5] Su una definizione generale dei Γ-limiti. Boll. Un. Mat. Ital., 14-B (1977), 722-744. | Zbl
,[6] Γ-limits of integral functionals. J. Analyse Math., 37 (1980), 145-185. | Zbl
- ,[7] Singular perturbation problems in the calculus of variations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 395-430. | EuDML | Numdam | MR
- ,[8] Integral representation and relaxation of local functionals. Nonlinear Anal., 9 (1985), 515-532. | MR | Zbl
- ,[9] Etude de la conductivité stationnaire dans un domaine comportant une répartition périodique d'inclusions minces de grande conductivité. RAIRO Anal. Numér., 17 (1983), 137-159. | EuDML | Numdam | MR | Zbl
,[10] Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl., 122 (1979), 1-60. | Zbl
- ,[11] Homogénéisation de structures présentant de nombreuses inclusions (strates, fibres) fortement conductrices. Thèse, Université de Perpignan, Perpignan (1986).
,[12] Reinforced and alveolar structures. Publication 85042 du Laboratoire d'Analyse Numérique Paris VI, Paris (1985).
- ,[13] Convergence problems for functionals and operators. Proceedings Recent Methods in Nonlinear Analysis", Rome 1978, edited by E. De Giorgi - E. Magenes - U. Mosco, Pitagora, Bologna (1979), 131-188. | MR | Zbl
,[14] G-operators and Γ-convergence. Proceedings of the International Congress of Mathematicians, Warszawa 1983. | Zbl
,[15] Una presentazione sintetica dei Γ-limiti generalizzati. Portugal. Math., 41 (1982), 405-436. | Zbl
- ,[16] A general theory of variational functionals. "Topics in Functional Analysis 1980-81", Scuola Normale Superiore, Pisa (1982), 149-221. | MR | Zbl
- ,[17] Some Methods in the Mathematical Analysis of Systems and their Control. Science Press, Beijing (China); Gordon Breach, New York (1981). | MR | Zbl
,[18] Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152. | MR | Zbl
,[19] Non Homogeneous Media and Vibration Theory. Lecture Notes in Phys., Springer-Verlag, Berlin (1980). | Zbl
,[20] Su alcune applicazioni di un tipo di convergenza variazionale. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 617-638. | Numdam | MR | Zbl
,[21] Thin inclusions in linear elasticity: a variational approach, J. Reine Angew, Math. (to appear). | MR | Zbl
- - ,[22] Homogenization of reinforced fibred structures. (Paper in preparation).
- ,