Symbolic extensions in intermediate smoothness on surfaces
[Extensions symboliques en régularité intermédiaire sur les surfaces]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 2, pp. 337-362.

Nous montrons que toute dynamique de classe 𝒞 r avec r>1 sur une surface compacte admet une extension symbolique, i.e. une extension topologique qui est un sous-décalage à alphabet fini. Nous donnons plus précisément une borne (optimale) sur l’infimum de l’entropie topologique de toutes les extensions symboliques. Ceci répond positivement à une conjecture de S. Newhouse and T. Downarowicz en dimension deux et améliore un résultat précédent de l’auteur [11].

We prove that 𝒞 r maps with r>1 on a compact surface have symbolic extensions, i.e., topological extensions which are subshifts over a finite alphabet. More precisely we give a sharp upper bound on the so-called symbolic extension entropy, which is the infimum of the topological entropies of all the symbolic extensions. This answers positively a conjecture of S. Newhouse and T. Downarowicz in dimension two and improves a previous result of the author [11].

DOI : 10.24033/asens.2167
Classification : 37C05, 37C40, 37A35
Keywords: entropy structure, symbolic extension, Yomdin's theory
Mot clés : structure d'entropie, extension symbolique, théorie de Yomdin
@article{ASENS_2012_4_45_2_337_0,
     author = {Burguet, David},
     title = {Symbolic extensions in intermediate smoothness on surfaces},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {337--362},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 45},
     number = {2},
     year = {2012},
     doi = {10.24033/asens.2167},
     mrnumber = {2977622},
     zbl = {1282.37015},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2167/}
}
TY  - JOUR
AU  - Burguet, David
TI  - Symbolic extensions in intermediate smoothness on surfaces
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2012
SP  - 337
EP  - 362
VL  - 45
IS  - 2
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2167/
DO  - 10.24033/asens.2167
LA  - en
ID  - ASENS_2012_4_45_2_337_0
ER  - 
%0 Journal Article
%A Burguet, David
%T Symbolic extensions in intermediate smoothness on surfaces
%J Annales scientifiques de l'École Normale Supérieure
%D 2012
%P 337-362
%V 45
%N 2
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/asens.2167/
%R 10.24033/asens.2167
%G en
%F ASENS_2012_4_45_2_337_0
Burguet, David. Symbolic extensions in intermediate smoothness on surfaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 2, pp. 337-362. doi : 10.24033/asens.2167. http://www.numdam.org/articles/10.24033/asens.2167/

[1] M. Asaoka, Hyperbolic sets exhibiting C 1 -persistent homoclinic tangency for higher dimensions, Proc. Amer. Math. Soc. 136 (2008), 677-686. | MR | Zbl

[2] M. Boyle & T. Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (2004), 119-161. | MR | Zbl

[3] M. Boyle, D. Fiebig & U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math. 14 (2002), 713-757. | MR | Zbl

[4] D. Burguet, Entropy and local complexity of differentiable dynamical sytems, thèse de doctorat, École polytechnique, 2008.

[5] D. Burguet, A proof of Yomdin-Gromov's algebraic lemma, Israel J. Math. 168 (2008), 291-316. | MR | Zbl

[6] D. Burguet, A direct proof of the tail variational principle and its extension to maps, Ergodic Theory Dynam. Systems 29 (2009), 357-369. | MR | Zbl

[7] D. Burguet, Examples of C r interval map with large symbolic extension entropy, Discrete Contin. Dyn. Syst. 26 (2010), 873-899. | MR | Zbl

[8] D. Burguet, Symbolic extensions for nonuniformly entropy expanding maps, Colloq. Math. 121 (2010), 129-151. | MR | Zbl

[9] D. Burguet, 𝒞 2 surface diffeomorphisms have symbolic extensions, Invent. Math. 186 (2011), 191-236. | MR | Zbl

[10] D. Burguet, Symbolic extensions and continuity properties of the entropy, Arch. Math. (Basel) 96 (2011), 387-400. | MR | Zbl

[11] D. Burguet & K. Mcgoff, Orders of accumulation of entropy, Fund. Math. 216 (2012), 1-53. | MR | Zbl

[12] J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161. | MR | Zbl

[13] T. Catalan, A generic condition for existence of symbolic extension of volume preserving diffeomorphisms, preprint arXiv:1109.3080. | MR

[14] T. Catalan & A. Tahzibi, A lower bound for topological entropy of generic non Anosov diffeomorphisms, preprint arXiv:1011.2441.

[15] R. A. Devore & G. G. Lorentz, Constructive approximation, Grund. Math. Wiss. 303, Springer, 1993. | MR | Zbl

[16] L. J. Díaz & T. Fisher, Symbolic extensions and partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst. 29 (2011), 1419-1441. | MR | Zbl

[17] T. Downarowicz, Entropy structure, J. Anal. Math. 96 (2005), 57-116. | MR | Zbl

[18] T. Downarowicz, Entropy in dynamical systems, New Mathematical Monographs 18, Cambridge Univ. Press, 2011. | MR | Zbl

[19] T. Downarowicz & A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem, Invent. Math. 176 (2009), 617-636. | MR | Zbl

[20] T. Downarowicz & S. E. Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (2005), 453-499. | MR | Zbl

[21] J. Flum & M. Grohe, Parameterized complexity theory, Texts in Theoretical Computer Science. An EATCS Series, Springer, 2006. | MR | Zbl

[22] M. Gromov, Entropy, homology and semialgebraic geometry, Séminaire Bourbaki, vol. 1985/86, exp. no 663, Astérisque 145-146 (1987), 225-240. | Numdam | MR | Zbl

[23] K. Mcgoff, Orders of accumulation of entropy on manifolds, J. d'Anal. math. 114 (2011), 157-206. | MR | Zbl

[24] M. Misiurewicz, Diffeomorphism without any measure with maximal entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 903-910. | MR | Zbl

[25] M. Misiurewicz, Topological conditional entropy, Studia Math. 55 (1976), 175-200. | MR | Zbl

[26] L. Neder, Abschätzungen für die Ableitungen einer reellen Funktion eines reellen Arguments, Math. Z. 31 (1930), 356-365. | JFM | MR

[27] S. E. Newhouse, Continuity properties of entropy, Ann. of Math. 129 (1989), 215-235. | MR | Zbl

[28] V. I. Osedelets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197-231. | Zbl

[29] S. Ruette, Mixing C r maps of the interval without maximal measure, Israel J. Math. 127 (2002), 253-277. | MR | Zbl

[30] P. Walters, An introduction to ergodic theory, Graduate Texts in Math. 79, Springer, 1982. | MR | Zbl

Cité par Sources :