Robust transitivity in hamiltonian dynamics
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 45 (2012) no. 2, p. 191-239

A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce C r open sets (r=1,2,,) of symplectic diffeomorphisms and Hamiltonian systems, exhibiting large robustly transitive sets. We show that the C closure of such open sets contains a variety of systems, including so-called a priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of the proof is a combination of studying minimal dynamics of symplectic iterated function systems and a new tool in Hamiltonian dynamics which we call “symplectic blender”.

Un objectif de ce travail est d’étudier la dynamique sur le complémentaire des tores KAM en mettant l’accent sur la transitivité robuste non locale. Nous introduisons les ensembles ouverts de difféomorphismes symplectiques et de systèmes hamiltoniens, présentant de grands ensembles robustement transitifs. L’adhérence de ces ensembles ouverts (en topologie C r , r=1,2,,) contient un grand nombre de systèmes, y compris les systèmes intégrables a priori instables. En outre, l'existence de mesures ergodiques avec un grand support est obtenue pour l'ensemble de ces systèmes. L'ingrédient principal des preuves est la combinaison de l'étude de systèmes itérés de fonctions de dynamique minimale et d'un nouvel outil de la dynamique hamiltonienne que nous appelons « mélangeurs symplectiques ».

DOI : https://doi.org/10.24033/asens.2164
Classification:  37D30,  37J40,  53Dxx,  70Fxx,  70Hxx
Keywords: symplectic blender, robust transitivity, hamiltonian dynamics, instability problem
@article{ASENS_2012_4_45_2_191_0,
     author = {Nassiri, Meysam and Pujals, Enrique R.},
     title = {Robust transitivity in hamiltonian dynamics},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 45},
     number = {2},
     year = {2012},
     pages = {191-239},
     doi = {10.24033/asens.2164},
     mrnumber = {2977619},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2012_4_45_2_191_0}
}
Nassiri, Meysam; Pujals, Enrique R. Robust transitivity in hamiltonian dynamics. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 45 (2012) no. 2, pp. 191-239. doi : 10.24033/asens.2164. http://www.numdam.org/item/ASENS_2012_4_45_2_191_0/

[1] F. Abdenur, C. Bonatti & S. Crovisier, Nonuniform hyperbolicity for C 1 -generic diffeomorphisms, Israel J. Math. 183 (2011), 1-60. | MR 2811152 | Zbl 1246.37040

[2] L. Arnold, Random dynamical systems, Springer Monographs in Math., Springer, 1998. | MR 1723992 | Zbl 0906.34001

[3] V. I. ArnolʼD, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), 91-192. | MR 170705 | Zbl 0135.42701

[4] V. I. ArnolʼD, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964), 9-12. | MR 163026 | Zbl 0135.42602

[5] V. I. Arnold, V. V. Kozlov & A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, third éd., Encyclopaedia of Math. Sciences 3, Springer, 2006. | MR 2269239 | Zbl 1105.70002

[6] D. Bernstein & A. Katok, Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians, Invent. Math. 88 (1987), 225-241. | MR 880950 | Zbl 0642.58040

[7] C. Bonatti & L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996), 357-396. | MR 1381990 | Zbl 0852.58066

[8] C. Bonatti & L. J. Díaz, Robust heterodimensional cycles and C 1 -generic dynamics, J. Inst. Math. Jussieu 7 (2008), 469-525. | MR 2427422 | Zbl 1156.37004

[9] C. Bonatti, L. J. Díaz & E. R. Pujals, A C 1 -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003), 355-418. | MR 2018925 | Zbl 1049.37011

[10] C. Bonatti, L. J. Díaz & M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopedia of Mathematical Sciences, Springer, 2004. | Zbl 1060.37020

[11] K. Burns & A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math. 171 (2010), 451-489. | MR 2630044 | Zbl 1196.37057

[12] C.-Q. Cheng & J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom. 67 (2004), 457-517. | MR 2153027 | Zbl 1098.37055

[13] A. Delshams, M. Gidea, R. De La Llave & T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation, in Hamiltonian dynamical systems and applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., Springer, 2008, 285-336. | MR 2446259 | Zbl 1144.37022

[14] A. Delshams, R. De La Llave & T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model, Mem. Amer. Math. Soc. 179 (2006). | Zbl 1090.37044

[15] A. Delshams, R. De La Llave & T. M. Seara, Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows, Adv. Math. 202 (2006), 64-188. | MR 2218821 | Zbl 1091.37018

[16] L. J. Díaz, E. R. Pujals & R. Ures, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), 1-43. | MR 1719547 | Zbl 0987.37020

[17] R. Douady, Stabilité ou instabilité des points fixes elliptiques, Ann. Sci. École Norm. Sup. 21 (1988), 1-46. | Numdam | MR 944100 | Zbl 0656.58020

[18] F. H. Ghane, A. J. Homburg & A. Sarizadeh, C 1 robustly minimal iterated function systems, Stoch. Dyn. 10 (2010), 155-160. | MR 2604683 | Zbl 1183.37079

[19] M. W. Hirsch, C. Pugh & M. Shub, Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. | MR 501173 | Zbl 0355.58009

[20] V. Horita & A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 641-661. | Numdam | MR 2259610 | Zbl 1130.37356

[21] V. Kaloshin & M. Levi, An example of Arnold diffusion for near-integrable Hamiltonians, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 409-427. | MR 2402948 | Zbl 1141.70009

[22] V. Kaloshin, J. N. Mather & E. Valdinoci, Instability of resonant totally elliptic points of symplectic maps in dimension 4, Astérisque 297 (2004), 79-116. | MR 2135676 | Zbl 1156.37313

[23] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.É.S. 51 (1980), 137-173. | Numdam | MR 573822 | Zbl 0445.58015

[24] A. Koropecki & M. Nassiri, Transitivity of generic semigroups of area-preserving surface diffeomorphisms, Math. Z. 266 (2010), 707-718; 268 (2011), 601-604. | MR 2719428 | Zbl 1215.37019

[25] R. Mañé, Contributions to the stability conjecture, Topology 17 (1978), 383-396. | MR 516217 | Zbl 0405.58035

[26] R. Mañé, Ergodic theory and differentiable dynamics, Ergebnisse Math. Grenzgb. 8, Springer, 1987. | MR 889254 | Zbl 0616.28007

[27] J.-P. Marco & D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. I.H.É.S. 96 (2002), 199-275. | Numdam | MR 1986314 | Zbl 1086.37031

[28] J. N. Mather, Arnolʼd diffusion. I. Announcement of results, Sovrem. Mat. Fundam. Napravl. 2 (2003), 116-130; English transl.in J. Math. Sci. 124 (2004), 5275-5289. | MR 2129140 | Zbl 1069.37044

[29] R. Moeckel, Generic drift on Cantor sets of annuli, in Celestial mechanics (Evanston, IL, 1999), Contemp. Math. 292, Amer. Math. Soc., 2002, 163-171. | MR 1884898 | Zbl 1034.70012

[30] M. Nassiri, Robustly transitive sets in nearly integrable Hamiltonian systems, Thèse, IMPA, 2006.

[31] S. E. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (1977), 1061-1087. | MR 455049 | Zbl 0379.58011

[32] C. Pugh & M. Shub, Stable ergodicity, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 1-41. | MR 2015448 | Zbl pre02041036

[33] E. R. Pujals & M. Sambarino, Homoclinic bifurcations, dominated splitting, and robust transitivity, in Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, 327-378. | MR 2186244 | Zbl 1130.37354

[34] R. C. Robinson, Generic properties of conservative systems I, II, Amer. J. Math. 92 (1970), 562-603, 897-906. | MR 273640 | Zbl 0212.56601

[35] R. Saghin & Z. Xia, Partial hyperbolicity or dense elliptic periodic points for C 1 -generic symplectic diffeomorphisms, Trans. Amer. Math. Soc. 358 (2006), 5119-5138. | MR 2231887 | Zbl 1210.37014

[36] M. Shub, Topologically transitive diffeomorphisms of 𝕋 4 , in Symposium on Differential Equations and Dynamical Systems, Springer Lecture Notes 206, 1971, 39-40.

[37] Z. Xia, Arnold diffusion: a variational construction, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Extra Vol. II, 1998, 867-877. | MR 1648133 | Zbl 0910.58015

[38] E. Zehnder, Homoclinic points near elliptic fixed points, Comm. Pure Appl. Math. 26 (1973), 131-182. | MR 345134 | Zbl 0261.58002