Ricci flow coupled with harmonic map flow
[Flot de Ricci couplé avec le flot harmonique]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 1, pp. 101-142.

Nous étudions un système d’équations consistant en un couplage entre le flot de Ricci et le flot harmonique d’une fonction $\phi$ allant de $M$ dans une variété cible $N$,

 $\frac{\partial }{\partial t}g=-2\mathrm{Rc}+2\alpha \nabla \phi \otimes \nabla \phi ,\phantom{\rule{2em}{0ex}}\frac{\partial }{\partial t}\phi ={\tau }_{g}\phi ,$
$\alpha$ est une constante de couplage strictement positive (et pouvant dépendre du temps). De manière surprenante, ce système couplé peut être moins singulier que le flot de Ricci ou le flot harmonique si ceux-ci sont considérés de manière isolée. En particulier, on peut toujours montrer que la fonction $\phi$ ne se concentre pas le long de ce système à condition de prendre $\alpha$ assez grand. De plus, il est suffisant de borner la courbure de $\left(M,g\left(t\right)\right)$ le long du flot pour obtenir le contrôle de $\phi$ et de toutes ses dérivées si $\alpha \ge \underline{\alpha }>0$. À part ces phénomènes nouveaux, ce flot possède certaines propriétés analogues à celles du flot de Ricci. En particulier, il est possible de montrer la monotonie d’une énergie, d'une entropie et d'une fonctionnelle volume réduit. On utilise la monotonie de ces quantités pour montrer l'absence de solutions en « accordéon » et l'absence d'effondrement en temps fini le long du flot.

We investigate a coupled system of the Ricci flow on a closed manifold $M$ with the harmonic map flow of a map $\phi$ from $M$ to some closed target manifold $N$,

 $\frac{\partial }{\partial t}g=-2\mathrm{Rc}+2\alpha \nabla \phi \otimes \nabla \phi ,\phantom{\rule{2em}{0ex}}\frac{\partial }{\partial t}\phi ={\tau }_{g}\phi ,$
where $\alpha$ is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always rule out energy concentration of $\phi$ a-priori by choosing $\alpha$ large enough. Moreover, it suffices to bound the curvature of $\left(M,g\left(t\right)\right)$ to also obtain control of $\phi$ and all its derivatives if $\alpha \ge \underline{\alpha }>0$. Besides these new phenomena, the flow shares many good properties with the Ricci flow. In particular, we can derive the monotonicity of an energy, an entropy and a reduced volume functional. We then apply these monotonicity results to rule out non-trivial breathers and geometric collapsing at finite times.

DOI : https://doi.org/10.24033/asens.2161
Classification : 53C21,  53C43,  53C44,  58E20
Mots clés : flot de Ricci, flot harmonique
@article{ASENS_2012_4_45_1_101_0,
author = {M\"uller, Reto},
title = {Ricci flow coupled with harmonic map flow},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {101--142},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 45},
number = {1},
year = {2012},
doi = {10.24033/asens.2161},
zbl = {1247.53082},
mrnumber = {2961788},
language = {en},
url = {http://www.numdam.org/articles/10.24033/asens.2161/}
}
Müller, Reto. Ricci flow coupled with harmonic map flow. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 1, pp. 101-142. doi : 10.24033/asens.2161. http://www.numdam.org/articles/10.24033/asens.2161/

 S. Bando, Real analyticity of solutions of Hamilton's equation, Math. Z. 195 (1987), 93-97. | MR 888130 | Zbl 0606.58051

 S. Bernstein, Sur la généralisation du problème de Dirichlet II, Math. Ann. 69 (1910), 82-136. | JFM 41.0427.02 | MR 1511579

 H.-D. Cao & X.-P. Zhu, A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), 165-492. | MR 2233789 | Zbl 1200.53058

 B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: Techniques and applications: Part I: Geometric aspects, Mathematical Surveys and Monographs 135, Amer. Math. Soc., 2007. | MR 2302600 | Zbl 1157.53034

 B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: Techniques and applications: Part II: Analytic aspects, Mathematical Surveys and Monographs 144, Amer. Math. Soc., 2008. | MR 2365237 | Zbl 1157.53035

 B. Chow & D. Knopf, The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc., 2004. | MR 2061425 | Zbl 1086.53085

 B. Chow, P. Lu & L. Ni, Hamilton's Ricci flow, Graduate Studies in Math. 77, Amer. Math. Soc., 2006. | MR 2274812 | Zbl 1118.53001

 T. H. Colding & W. P. Minicozzi Ii, Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005), 561-569. | MR 2138137 | Zbl 1083.53058

 T. H. Colding & W. P. Minicozzi Ii, Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), 2537-2586. | MR 2460871 | Zbl 1161.53352

 D. M. Deturck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), 157-162. | MR 697987 | Zbl 0517.53044

 J. Eells & L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. | MR 495450 | Zbl 0401.58003

 J. Eells & L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. | MR 956352 | Zbl 0669.58009

 J. Eells & J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. | MR 164306 | Zbl 0122.40102

 C. Guenther, J. Isenberg & D. Knopf, Stability of the Ricci flow at Ricci-flat metrics, Comm. Anal. Geom. 10 (2002), 741-777. | MR 1925501 | Zbl 1028.53043

 R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. | MR 664497 | Zbl 0504.53034

 R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995. | MR 1375255 | Zbl 0867.53030

 P. Hartman & A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449-476. | MR 58082 | Zbl 0052.32201

 J. Jost, Riemannian geometry and geometric analysis, third éd., Universitext, Springer, 2002. | MR 1871261 | Zbl 1227.53001

 B. Kleiner & J. Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008), 2587-2855. | MR 2460872 | Zbl 1204.53033

 T. Lamm, Biharmonic maps, Thèse, Albert-Ludwig-Universität Freiburg im Breisgau, 2005. | Zbl 1075.58013

 A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Publ. Math. I.H.É.S. 10 (1961). | Numdam | Zbl 0098.42607

 B. List, Evolution of an extended Ricci flow system, Thèse, Albert-Einstein-Institut, Berlin, 2005. | Zbl 1166.53044

 J. Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007), 627-666. | MR 2336062 | Zbl 1135.53046

 C. Mantegazza & L. Martinazzi, A note on quasilinear parabolic equations on manifolds, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. | MR 3060703 | Zbl 1272.35123

 J. Morgan & G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc., 2007. | MR 2334563 | Zbl 1179.57045

 J. Morgan & G. Tian, Completion of the proof of the geometrization conjecture, preprint arXiv:0809.4040.

 R. Müller, Differential Harnack inequalities and the Ricci flow, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006. | MR 2251315 | Zbl 1103.58014

 R. Müller, The Ricci flow coupled with harmonic map heat flow, Thèse, ETH Zürich, 2009. | Zbl 1247.53082

 R. Müller, Monotone volume formulas for geometric flows, J. reine angew. Math. 643 (2010), 39-57. | MR 2658189 | Zbl 1204.53054

 J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. | MR 75639 | Zbl 0070.38603

 G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint arXiv:math/0211159. | Zbl 1130.53001

 G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint arXiv:math/0307245. | Zbl 1130.53003

 G. Perelman, Ricci flow with surgery on three-manifolds, preprint arXiv:math/0303109. | Zbl 1130.53002

 H. Poincaré, Cinquième complément à l'Analysis Situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110. | JFM 35.0504.13

 M. Reed & B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. | MR 493421 | Zbl 0242.46001

 O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981), 110-120. | MR 620582 | Zbl 0471.58025

 O. C. Schnürer, F. Schulze & M. Simon, Stability of Euclidean space under Ricci flow, Comm. Anal. Geom. 16 (2008), 127-158. | MR 2411470 | Zbl 1147.53055

 W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), 223-301. | MR 1001277 | Zbl 0676.53044

 M. Simon, Deformation of ${C}^{0}$ Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom. 10 (2002), 1033-1074. | Zbl 1034.58008

 M. Struwe, Geometric evolution problems, in Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser. 2, Amer. Math. Soc., 1996, 257-339. | Zbl 0847.58012

 T. C. Tao, Perelman's proof of the Poincaré conjecture: a nonlinear PDE perspective, preprint arXiv:math/0610903.

 W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381. | Zbl 0496.57005

 P. Topping, Lectures on the Ricci flow, London Math. Soc. Lecture Note Series 325, Cambridge Univ. Press, 2006. | Zbl 1105.58013

 M. B. Williams, Results on coupled Ricci and harmonic map flows, preprint arXiv:1012.0291.